

Learn API Testing
Norms, Practices, and
Guidelines for Building

Effective Test Automation

Jagdeep Jain

Learn API Testing: Norms, Practices, and Guidelines for Building Effective Test Automation

ISBN-13 (pbk): 978-1-4842-8141-3 ISBN-13 (electronic): 978-1-4842-8142-0
https://doi.org/10.1007/978-1-4842-8142-0

Copyright © 2022 by Jagdeep Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham
Coordinating Editor: Divya Modi
Copy Editor: Mary Behr

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at https://github.com/Apress/
Learn- API- Testing.

For more detailed information, please visit https://github.com/Apress/Learn- API- Testing.

Printed on acid-free paper

Jagdeep Jain
Dewas, Madhya Pradesh, India

https://doi.org/10.1007/978-1-4842-8142-0

I dedicate this book to my teachers, mentors,
and colleagues who have been instrumental in

the enhancement of my knowledge on the subject,
and also to my wife, daughter, sisters, parents, and in-laws,

without whose relentless support it would not have been
possible to manage the tight schedule of this work.

—Jagdeep Jain

v

Table of Contents

About the Author ��xv

About the Technical Reviewers ��xvii

Acknowledgments ���xix

Introduction ���xxi

Chapter 1: Introduction to API Testing ��1

What Is API Testing? ��1

Need ��5

Types of API Testing ��6

Advantages ���8

Summary���9

Chapter 2: Web Application Architecture ���11

Web Applications Defined ���11

Monolithic vs� Microservices Architecture ��12

Designing Test Strategies ��17

RESTful Architecture ���18

HTTP ��20

Headers ���23

Requests ���25

Request Methods ���25

Resource Addresses ��25

https://doi.org/10.1007/978-1-4842-8142-0_1
https://doi.org/10.1007/978-1-4842-8142-0_1#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_1#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_1#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_1#Sec4
https://doi.org/10.1007/978-1-4842-8142-0_1#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_2
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec4
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec6
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec7
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec8
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec9

vi

Request Headers ���25

Request Body ��26

Response ��27

Status Line ���27

Response Header ��28

Response Body ��28

Response Codes ��28

Summary���30

Chapter 3: Authentication ���31

HTTP Authentication ��31

Basic Authentication ��32

Session-Based Authentication ��32

Token/JWT-Based Authentication ���33

OAuth2-Based Authentication ���35

Authorization ���37

RBAC ��37

ABAC ��38

Authentication and Authorization Services ���38

Summary���39

Chapter 4: Tools, Frameworks, and Libraries �������������������������������������41

API Testing Tools ���42

cURL ��42

Postman ��51

RestAssured ��63

Frameworks/Libraries ���71

TestNG ���71

Log4j ��72

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8142-0_2#Sec10
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec11
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec12
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec13
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec14
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec15
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec16
https://doi.org/10.1007/978-1-4842-8142-0_2#Sec17
https://doi.org/10.1007/978-1-4842-8142-0_3
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec4
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec6
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec7
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec8
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec9
https://doi.org/10.1007/978-1-4842-8142-0_3#Sec10
https://doi.org/10.1007/978-1-4842-8142-0_4
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec8
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec24
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec25
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec26
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec27

vii

Jackson-Databind ���72

HashMap ���72

Assertj ���73

Java Spring ��73

Summary���73

Chapter 5: Test Pyramid ���75

Black Box Testing ��76

Grey Box Testing��77

White Box Testing ��77

Test Pyramid ���78

Summary���79

Chapter 6: Testing the API ��81

Workflows/Use Cases/Test Script ���82

Schema Validation���82

Test Coverage��85

Header Testing ��86

Request Header ���86

Response Header ��87

Request Body ��88

Format Unsupported ��88

Special Characters ��88

Very Long Strings ��88

Invalid Method ���89

Invalid Value ��89

Incorrect Data Type ��89

Empty Data/Object ���89

Required Fields ��89

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8142-0_4#Sec28
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec29
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec30
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec31
https://doi.org/10.1007/978-1-4842-8142-0_4#Sec32
https://doi.org/10.1007/978-1-4842-8142-0_5
https://doi.org/10.1007/978-1-4842-8142-0_5#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_5#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_5#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_5#Sec4
https://doi.org/10.1007/978-1-4842-8142-0_5#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_6
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec4
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec10
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec13
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec14
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec15
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec16
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec17
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec18
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec19
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec20
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec21

viii

Null ��90

Redundant Fields ���90

DELETE Already Deleted Entity ��90

Duplicate Check ���90

Response Body ���91

Actual Data vs� Expected Data ���91

Limit/Size/Pagination/Sorting ��91

API Version Testing ��91

Internal vs� External APIs ��91

Consumer-Driven Contract Testing ���92

Importance of Negative Testing ��92

Summary���93

Chapter 7: A Good Test Script ���95

Components of a Test Script ���96

setup() ��97

test() ���97

teardown() ��97

Guidelines ���98

Single-Attempt Test ���98

Document Test Objective ���98

Keep It Small ���99

Use assertj for Assertions ��99

Use log4j ��100

Order of Tests ��100

No Interventions Between Test Steps ��101

Avoid Hard Sleeps ���102

Always Use Assertions ���102

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8142-0_6#Sec22
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec23
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec24
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec25
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec26
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec27
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec28
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec29
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec30
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec31
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec32
https://doi.org/10.1007/978-1-4842-8142-0_6#Sec33
https://doi.org/10.1007/978-1-4842-8142-0_7
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec4
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec6
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec7
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec8
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec9
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec10
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec11
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec12
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec13
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec14

ix

Do Not Overtest ���103

Do Not Import a Test into Another Test ��103

Test Boundaries ���103

API Test Coverage ��104

Provide Short Commands ��104

Do not try{} catch{} ��104

Summary���104

Chapter 8: Coding Guidelines ���105

Coding Best Practices ���105

Class Naming Conventions ��106

Method Naming Conventions ��106

Variable Naming Conventions ��107

Constant Naming Conventions ��107

Provide User Actions ��107

Simplicity ���107

Indentation ��108

Test Assertions ��108

Test Class Naming Conventions ��109

Test Method Naming Conventions ��109

Test Package Naming Conventions ���111

Documentation ��113

Summary���113

Chapter 9: Organize a Test Framework ��115

Framework Requirements���116

Request ���118

Response ���118

Exception ���118

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8142-0_7#Sec15
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec16
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec17
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec18
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec19
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec191
https://doi.org/10.1007/978-1-4842-8142-0_7#Sec20
https://doi.org/10.1007/978-1-4842-8142-0_8
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec4
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec6
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec7
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec8
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec9
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec10
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec11
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec12
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec13
https://doi.org/10.1007/978-1-4842-8142-0_8#Sec14
https://doi.org/10.1007/978-1-4842-8142-0_9
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec4

x

Configuration ���119

User Authentication ���119

Processor ���119

Model ���120

Test Framework ���120

Test Assertions ��120

Logger ���121

Util ���121

Test Execution ���121

Debug Config ���121

Test Driver ���122

Setting Up a Maven Project ���122

Dependencies and Plugins ��123

RestAssured ��123

Log4j ��123

TestNG ���124

Spring Framework ���124

Assertj ���125

Jackson-Databind ���125

Maven Compiler Plugin ��125

Surefire Plugin ���126

Java Code Formatting Plugin ���127

Request ���128

Response ��131

Exceptions ���135

Configuration���136

Properties File ���136

Spring ��137

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8142-0_9#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec6
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec7
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec8
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec9
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec10
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec11
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec12
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec13
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec14
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec15
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec16
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec17
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec18
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec19
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec20
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec21
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec22
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec23
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec24
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec25
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec26
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec27
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec28
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec29
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec30
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec31
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec32

xi

Application Configuration ��139

Application Context��140

Application Config ���140

Complete URL For the Test Script ��141

Test Data ��142

User Authentication ���144

Processor ��145

Model ��146

Test Framework ��146

Logger ���148

Util ���149

Test Execution ���149

Debug Config ��150

Test Driver ���150

Summary���150

Chapter 10: First Test Script ���151

Developing Your First Test ���151

Base Test ���152

First Test ��154

Test Suite ��157

TestNG XML ���157

Executing a Test ��159

Execute a Test Suite ��159

Execute an Individual Test ���159

Execution Results ��160

TestNG Report ��160

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8142-0_9#Sec33
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec34
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec35
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec36
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec37
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec40
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec41
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec42
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec43
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec44
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec45
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec46
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec47
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec48
https://doi.org/10.1007/978-1-4842-8142-0_9#Sec49
https://doi.org/10.1007/978-1-4842-8142-0_10
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec6
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec7
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec8
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec9
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec10
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec11
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec12
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec13

xii

Logging ���161

log()�all() ��161

Response Time ��162

Debug ��163

Summary���164

Chapter 11: API Documentation��165

Need ��166

Swagger ��167

Summary���176

Chapter 12: Case Study: Shopping Cart APIs ������������������������������������177

Feature List ���178

QA Responsibility Matrix ���179

Sprint # ���181

Goal Setting ���183

Sprint One ���183

Sprint Guidelines ���184

QA Tasks ��185

Targeted Features ��189

API Endpoints ��190

Unit Testing ��190

Test Plan Development ��190

Test Data Preparation ��191

Manual Test Scripts ���192

Postman ��192

Test Automation ���192

Test Suite ���194

Parallel Test Execution ���195

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8142-0_10#Sec14
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec15
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec16
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec17
https://doi.org/10.1007/978-1-4842-8142-0_10#Sec18
https://doi.org/10.1007/978-1-4842-8142-0_11
https://doi.org/10.1007/978-1-4842-8142-0_11#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_11#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_11#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_12
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec1
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec2
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec3
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec4
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec5
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec6
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec11
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec17
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec18
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec19
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec20
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec21
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec22
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec23
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec24
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec25
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec26

xiii

Test Execution ���196

Front-End Team ���197

Sprint Nth ��197

Sprint Demo Feedback Testing ��198

Hardening Sprint ���198

Release Testing��198

Summary���199

 Appendix A: Workstation Setup ��201

 Java���201

 MacOS ���202

Ubuntu ���202

Linux ��202

Windows ��202

 Maven ���203

 MacOS ���203

Ubuntu ���204

Linux ��204

Windows ��204

 Maven Project ���204

 cURL ��205

 MacOS ���205

Ubuntu ���205

Linux ��206

Windows ��206

 Postman ��206

 IDE ���206

 Tomcat ��206

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8142-0_12#Sec27
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec28
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec29
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec30
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec31
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec32
https://doi.org/10.1007/978-1-4842-8142-0_12#Sec33

xiv

MacOS/Ubuntu/Linux ���206

Windows ��207

 Appendix B: Contact Management Application ��������������������������������209
 Swagger ��211

 Appendix C: Shopping Cart Application ��213

 Swagger ��214

Index ���215

Table of ConTenTs

xv

About the Author

Jagdeep Jain has a Bachelor of Computer

Science and Engineering degree and more

than 15 years of rich experience in the software

quality assurance and testing domain. He

has worked for several product development

software companies. He is a firm believer and

an avid advocate of test automation. He is also

the co-author of Pro Apache JMeter with Sai

Matam.

xvii

About the Technical Reviewers

Nitesh Kumar Jain has over a decade of

experience in the software testing world. He

has an M.Tech in Information Technology

from IIITM Gwalior, M.P. and a B.E. in

Computer Science and Engineering from

NIT Raipur, Chattisgarh. He is a keen

technology learner with a “let’s automate

everything” attitude. He is also an ISTQB-

certified Test Manager, Technical Test Analyst,

and Agile Test Engineer. He loves to make

Java/Swing-based tools that can help with

anything related to software testing. He is

presently working as a Lead QA at https://watermarkinsights.com

and is constantly involved in doing quality work on framework design

for UI, API, and performance test automation. His LinkedIn profile is

https://www.linkedin.com/in/nitesh-jain-958a2630/.

https://watermarkinsights.com
https://www.linkedin.com/in/nitesh-jain-958a2630/

xviii

Kushagra Mittal has a Bachelor of Technology

in Computer Science degree from Amity

University, Lucknow, UP. He has over nine

years of experience in developing back-

end solutions for multinational companies

and has built products that are used by

thousands of customers. He has developed

microservices using Java Spring Boot and has

used the Swagger UI for API documentation.

He has hosted various training sessions with

the University of Lucknow, UP on big data,

distributed systems, and machine learning. He

is an Oracle-certified Java Programmer, Oracle

Cloud Infrastructure Foundation Certified Associate, and AWS Certified

Developer - Associate. He is currently working as a Principal Member of

Technical Staff at Oracle India Pvt. Ltd. His LinkedIn profile is https://

www.linkedin.com/in/kushagra-mittal/.

abouT The TeChniCal RevieweRs

https://www.linkedin.com/in/kushagra-mittal/
https://www.linkedin.com/in/kushagra-mittal/

xix

Acknowledgments

I want to thank everyone who helped in giving shape to this book,

including but not limited to providing useful and timely feedback on the

chapters, source code, and test scripts, and finding bugs in the sample

web applications. Without them, it would have been tough to create good

quality work for you, the reader.

Thanks to Nidhi Jain for reviewing each and every line of the book with

the objective of improving readability.

Nitin Dhawan works as a program manager and he has helped various

teams in setting up scrum best practices and implementing planning,

monitoring, and risk assessment modules. Currently he is working as

a technical program manager and is responsible for establishing the

communication channel between engineering teams by ensuring regular

communication on projects/programs and status to everyone. Thanks to

Nitin for reviewing the case study chapter. It was a big help to get all of the

angles on how the software industry works in the scrum model.

Thanks to Aashita Priya, Advocate Jayant R. Vipat, Akshay Muramatti,

Amudhan Kash, Anand Sinha, Anuj Yadav, Arun Vijapur, Arijit Hawlader,

Aruna Piraviperumal, Ashish Mankar, Beejal Vibhakar, Bharat Vipat,

Deepika Sharma, Ganesh Phirke, Ganesh Prasath S, Gomtesh Gandhi,

Gyan Bhal, Haridev Vengateri, Harshad Savot, Harshvardhan Vipat, Jay

Erb, Jay Shah, Jaya Gopal Somu, Jon Gunnip, Kevendra Patidar, Laura

King, Mangesh Lunawat, Marque Davis, Matt Armstrong ,Michael

Laube, Monica Poddar, Mukesh Bafna, Nehal Gaikwad, Nikhil Agrawal,

Nitish Shirsath, Niti Dugar, Pankaj Saraf, Patrick Lee, Peeyush Janoria,

xx

Piyush Singh, Prasad Jakka, Prasoon Kumar, Qian Li, Rajat Jain, Rangith

Vaddepally, Ramanuj Vipat, Ramesh Sunkara, Rohit Bagde, Sai Matam,

Sathya Gowri N, Shally Garg, Sharon Annese, Shravan Belde, Snehal

Mundle, Stella Yun, Sudeep Tripathy, Tapan Upadhyay, Tarak Joshi,

Tina Bajaj, Tulasi R. Meeniga, Vidhut Singh, Vijaay Doraiswamy, Vijay

Santore, Yogesh Sharma, and Zhelyazko Tumbev for enriching my skill set,

technical expertise, and knowledge on software development practices

and principles, and for keeping me motivated each and every day.

I am very thankful to the editorial team at Apress and the technical

reviewer for having various checkpoints in place and for providing useful

feedback in a timely manner, all of which have made this book more useful

for you, the reader.

aCknowledgmenTs

xxi

Introduction

This book is intended to get beginners and intermediate-level software

engineers, up and running with API testing, standard coding practices, and

the standards and guidelines for better API test automation development

and management.

Each chapter starts by explaining the topic it covers, allowing you to

skip ahead if you are already aware of the contents.

Chapter 1 introduces APIs, what API testing is, why we need to have

API testing during the software development/testing process, types of API

testing, and the advantages of testing APIs.

Chapter 2 explains the different architectures used for developing

a scalable software web application plus the protocols used for

communicating between the client and the server and their attributes.

Chapter 3 talks about different types of authentication used in web-

based software applications.

Chapter 4 covers the tools used in API testing: cURL, Postman, and

RestAssured. This chapter also has information on the useful frameworks

and libraries used in test automation development.

Chapter 5 introduces the test pyramid and why we need to visualize

tests on each layer of a software application.

Chapter 6 walks you through the aspects of API testing and the API

testing paradigm.

Chapter 7 talks about the components and guidelines for a good

test script.

Chapter 8 covers things that are widely missed and never perceived

later in the project life cycle phase, but if used will make test automation

much better and joyful.

10.1007/978-1-4842-8142-0_1
10.1007/978-1-4842-8142-0_2
10.1007/978-1-4842-8142-0_3
10.1007/978-1-4842-8142-0_4
10.1007/978-1-4842-8142-0_5
10.1007/978-1-4842-8142-0_6
10.1007/978-1-4842-8142-0_7
10.1007/978-1-4842-8142-0_8

xxii

Chapter 9 talk about the components of the test automation framework

and its design aspects. This chapter guides you through writing a test

automation framework from scratch.

Chapter 10 is an extension of Chapter 9. In it, you learn how to develop

the test script, execute it, and verify the results.

Chapter 11 introduces API documentation developed using the

Swagger UI and how to read documentation that will be useful in writing

test scripts.

Chapter 12 covers a case study of a shopping cart application of a

hypothetical company. A hypothetical character will walk you through the

real-life testing working on a Scrum project.

You should have a prior knowledge of the Java programming language

and understand the basics of Maven, Tomcat, and Docker. In addition, an

awareness of the Spring Framework is good. I use design patterns (Factory

pattern, Singleton pattern) and solid design principles in this book so you

will gain knowledge on best coding practices.

This book is useful for API testing aspirants and developers/architects.

Project managers and non-technical team members will also greatly

benefit from reading this book.

The test scripts developed in this book are hosted on GitHub. Any

source code or supplementary material referenced by the author in this

book is available to readers on GitHub via the book’s product page, located

at http://www.apress.com/978-1-4842-8141-3. For more detailed

information, visit http://www.apress.com/source- code. For any queries

or valuable feedback, feel free to get in touch with me, Jagdeep Jain, at

jagdeep.jain@gmail.com.

inTRoduCTion

10.1007/978-1-4842-8142-0_9
10.1007/978-1-4842-8142-0_10
10.1007/978-1-4842-8142-0_9
10.1007/978-1-4842-8142-0_11
10.1007/978-1-4842-8142-0_12
http://www.apress.com/978-1-4842-8141-3
http://www.apress.com/source-code
http://jagdeep.jain@gmail.com

1

CHAPTER 1

Introduction to API
Testing
This chapter introduces application programming interfaces (APIs) and

API testing. API testing is an important aspect of software testing activities

during the development of typical services-based software. It involves

testing the application’s business components, usually represented as an

API, before the UI is developed. A microservice is an API that deals with a

single requirement.

By the end of this chapter, you’ll have a good idea of the different types

of API testing, the need for them, and the advantages of testing at the API

level. If you’re already familiar with API testing, you may proceed to the

next chapter.

 What Is API Testing?
An API abstracts the application layer and provides the resource(s) for

consumption by the client. APIs are the backbone of any typical web

application, multi-tier web application, or mobile application that

hides the inside details of the system, such as how an online payment is

processed for a consumer.

APIs are the middle tier of an application and they deal with the back

end, usually via an ORM (Object-Relational Mapping) or any other tool, or

directly with the database and with the front end. The API acts as an agent

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_1

https://doi.org/10.1007/978-1-4842-8142-0_1#DOI

2

between the back end and the front end. The API reads the data from the

back end based on the user requirement/request and sends the response

to the front end.

For APIs that do not have a front end, the owner of such an API

provides a service-based model to their users, such as a payment gateway,

weather forecasting, etc.

Figure 1-1 shows a typical service-based software application

architecture. It has a database at the back end, APIs in the middle tier, and

requests made from a browser or mobile application. We will discuss this

setup in detail in the next chapter.

Figure 1-1. Web-based software application

A typical web application1 can be an e-commerce application, where

the user wants to see various product offerings and then buy a product as

per their needs. Requests are typically made from the front end/GUI. The

middle tier has various components in the form of APIs, such as an API

1 https://en.wikipedia.org/wiki/Multitier_architecture

Chapter 1 IntroduCtIon to apI testIng

https://en.wikipedia.org/wiki/Multitier_architecture

3

for listing the products based on the requirements of a user, another API

to add the product to the e-cart, and another set of APIs or third-party

payment APIs to deal with the payment processing on behalf of the

e-commerce web store.

A microservice is an API that deals with a single requirement and the

service can be functional/deployed independently. Microservices2 are

APIs that define the business logic of a typical software application and

fulfill the develop-fast-and-scalable software development philosophy. We

will discuss this more in the next chapter.

In the above example of a typical web application, API testing3 deals

with the testing of the APIs for the product listings, adding a product to

the e-cart, and performing the payments on behalf of the e-commerce

web store.

API testing deals with business workflows. This may be categorized

into black-box testing, but technically speaking, it is more of a gray-box

testing where the tester knows some internal details of the implementation

in brief, but not in depth. They test the APIs individually by having an

understanding of the technical aspects of the code path or logic used

inside the API.

“Good to have internal knowledge of the implementation for a
given API.”

API testing is testing the end points4 of the given API based on the

given contract. The endpoint is defined in terms of the URI5, such as /api/

v1/products/{productId} or /api/v1/products. The contract should be

in the required format (JSON/XML) of the request, and it may or may not

include the parameter(s) based on the request method.

2 https://en.wikipedia.org/wiki/Microservices
3 https://en.wikipedia.org/wiki/API_testing
4 https://en.wikipedia.org/wiki/Web_API#Endpoints
5 https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Chapter 1 IntroduCtIon to apI testIng

https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/API_testing
https://en.wikipedia.org/wiki/Web_API#Endpoints
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

4

Accessing an API requires a mechanism that allows us to perform

various actions based on the requirement(s), which are called request

methods6.

API testing tests the middle tier before it is consumed by the

consumer/front end. The tester makes sure that the endpoints are correct

and they accept the request in the given format with required parameters

and provide the correct response in the prescribed format. This testing

directly deals with the application server. It may involve testing the

individual component of the application or combining a few components

to test a user workflow. All the standard testing techniques are performed

while testing APIs, like equivalence class partitions, boundary value

analysis, large requests, invalid requests, unauthorized requests, etc.

API testing requires specific tools, such as curl7, Postman8, and

RestAssured9, which support the request methods and the protocol that is

used to retrieve the API. The commonly used protocol is HTTP(S)10. The

tester keys in the URL with the required request method and requests the

parameters in the API testing tools in the same way as the consumer of the

API and then verifies the response/output in the context of the application.

A test plan is required, just like user workflow testing. The test plan has

input, expected output, and a precondition.

The concepts in the above paragraphs are covered in more detail in

later chapters.

6 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_
methods
7 https://en.wikipedia.org/wiki/CURL
8 www.postman.com/
9 https://rest-assured.io/
10 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Chapter 1 IntroduCtIon to apI testIng

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/CURL
http://www.postman.com/
https://rest-assured.io/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

5

 Need
Based on standard software development principles, software should fail

fast and quite often before becomes a working product in the development

stage. Testing the back end/middle tier is the best way to save time

and cost. API testing is the fastest way to find functional/performance/

security/(few more types) bugs before a consumer uses it for their own

purpose or for GUI development. It is critical for the vendor to test all

endpoints since the success or failure of the software application depends

on the robustness of the API(s). The business must test all API endpoints

efficiently.

The ROI on testing early in the software development process is much

higher than testing at the end. Since API testing has larger code/functional

coverage, the testing tends to be much more efficient compared to front-

end testing. It is faster to identify bugs at the individual API level because

the complexity is lower and the possibility of finding bugs is higher

compared to finding the bugs on the front-end level.

Not testing the APIs and testing on the front-end level only renders the

testing more complex and tedious, and it also usually entails much more

testing time and resources. Testing only the front end is an error-prone

process. Since the frequency of the changes on the front end tend to be

much higher than on the back end/middle tier, the failure rate also tends

to be higher. As a result, it’s time consuming to identify whether the bug is

a back-end/API bug or a front-end bug.

You will see the test pyramid in a later chapter, which will show how

efficiently implementing API testing can help reduce testing efforts, save

time and cost, and help in building a bug-free product as much as possible

(at least without any catastrophic bugs).

Chapter 1 IntroduCtIon to apI testIng

6

 Types of API Testing11

An API responds to a request by the consumer/front end. The response

should be quick. The API should not be allowed to be accessed by an

unauthorized user. When concurrent users access the API, it should

respond within the stipulated time. Invalid requests to the API should be

handled appropriately and an error message should be returned. The API

should adhere to the local laws. If the API is provided as a service, then it

should maintain the contract with the consumer, the parameter should not

change, and so on. All other aspects we discussed are applicable.

The following are the types of API testing:

• Functional testing addresses the functional aspects

of the API, such as returning a response as per the

business requirements.

• Performance testing addresses the response time under

load. When multiple requests are made for the given

API at the same point in time, the API should return

the response in the allowed time limit as per the SLA

definition agreed upon between the service provider

and consumer.

• Security testing addresses the unauthorized access of

the API by gaining access to the session, parameter

tampering, and so on. The API should not allow any

anonymous/unauthorized users to gain access to the

data via itself.

11 https://en.wikipedia.org/wiki/API_testing#Types_of_API_testing

Chapter 1 IntroduCtIon to apI testIng

https://en.wikipedia.org/wiki/API_testing#Types_of_API_testing

7

• Noise testing addresses invalid or malfunction data in

the request. The API should respond accordingly and

on time. If the data is invalid, the API should respond

with the proper error code/message.

• Error code and message testing address incorrect input

data and responding with the appropriate error code

and message.

• Scale testing is related to infrastructure, which is

a DevOps routine job, but the API gets tested in

this scenario as well. This is mostly the case in

microservices architecture where a particular API

is used more frequently. The API should be made

scalable since the concurrent access shall be more

frequent and the API should be made available all

the time.

• Compliance testing falls in the local jurisdiction where

the API is being consumed. For example, if the API is

asking for personal information (cell number, city of

birth, etc.), then this information should be protected

by the vendor, any attempt to get this information

should not be allowed, and audit logs should be

maintained.

• CDCT (consumer-driven contract testing) means that

the service provider always maintains the same request

payload. This is critical for the business of the service

provider. If the payload is changed, then the consumer

request will start failing and it will be a loss to the

business.

Chapter 1 IntroduCtIon to apI testIng

8

 Advantages
Finding bugs at the early stage of software development has advantages.

Finding a bug in the back end before the API is implemented saves

time in the development of the API. Finding a bug in the middle tier/

API saves time in the development of the front end. The later we test,

the more complex and challenging it becomes for the test engineer

to find bugs within a tight deadline in the product delivery software

development model.

Finding bugs at the business layer facilitates delivery of a quality

product. If the API is tested well enough, there are obvious advantages for

the product development team.

The following are a few advantages of doing API testing:

1. Easy to automate

2. Faster at finding bugs

3. GUI independent

4. Maximum code path coverage

An API is a simple mechanism. It has an endpoint and a few request

methods, The input is the payload, and the output is the response from the

API. It is very easy and quick to automate the API tests. Usually, the ratio

of GUI vs. API test development is 1:5; that is, you can write five API tests

in the same time as one GUI test development. Unlike GUI tests, API tests

are not flaky, which means the API contract is not changed and the test

never fails. A GUI frequently changes based on end user feedback, but an

API does not change unless there is a major change in the business model/

workflow.

It is always faster to find bugs during the development of the business

logic. There are a lot of free tools available for testing APIs. It is faster

to find bugs even if you are not automating tests from the start of the

sprint. Once you have an automation test suite, a developer can run

Chapter 1 IntroduCtIon to apI testIng

9

those tests before pushing code to the code repository; also, the issues

can be identified on the jenkins build. If the test fails, the developer can

always decide on a plan of action to fix the bug or triage the same for the

next sprint.

API development is independent of the GUI; the feedback from

the tester is faster, and testing can be isolated to the individual API or

component level.

An API has greater code path coverage as compared to the GUI. Since

the tester tests the business logic at the component level, there is a higher

probability of finding bugs and most all code paths are covered. Testing

from the GUI is exhaustive if we want to cover all code paths; this leads to

different kinds of challenges, like time available for testing and the rate of

bug identification.

 Summary
In this chapter, you learned what an API is, what API testing is, why you

need to test at the API level, various types of API testing, and advantages

of doing API testing. In the coming chapters, you will learn that the ROI is

beyond your imagination if you test the application at the middle tier—that

is, at the API level.

Chapter 1 IntroduCtIon to apI testIng

11

CHAPTER 2

Web Application
Architecture
In the previous chapter, you were introduced to API testing. This chapter

will help you gain knowledge about the different architectures used for

developing a scalable software web application, the protocols used for

communicating between a client and a server, and the attributes of those

protocols.

At the end of this chapter, you should have a good idea of monolithic

and microservices-based architecture and RESTful architecture, the

communication established between client and server, and HTTP, headers,

requests, and responses. If you are already familiar with web-based

software application architecture, you can proceed to the next chapter.

 Web Applications Defined
A web application is software that runs on a browser. A web application

addresses specific needs for the user, such as booking airline tickets. Each

web application is developed based with a business goal, user base, and

future in mind. Accordingly, its architecture is decided. For a tester, it is

very important to have an understanding of the underlying architecture

and its various aspects, like protocol stack, communication medium

between client and server, and attributes.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_2

https://doi.org/10.1007/978-1-4842-8142-0_2#DOI

12

With the evolution of the Web, various architectures came into

existence. In the context of API testing, we will be discussing a few

important types that exist as of now.

 Monolithic vs. Microservices Architecture
Instead of discussing monolithic and microservices architecture types

separately, we will discuss the differences, which will help in your quick

understanding.

Software applications have evolved over a few decades. Everyone who

develops and maintains software ends up finding new ways of doing things

or organizing stuff in a way to tackle future problems.

Software development teams are always under pressure to deliver

quickly in order to beat the competition. This leads to messed-up

code quite often. (More accurately, it is always the case.) A monolithic

application is an example of fast development, where the development

team wants to develop the product in a quick turnaround time. They write

everything in a single bundle and deliver it to the customer. It works well

for a couple of months or a year or two, and then requirements are floated

from the customer that require a change in the design or architecture.

Agile development supports changing the design/architecture over a

period of time while delivering the code and deploying it to production

with each iteration.

To deal with complexity and at the same time support the idea

of delivering faster, a new architecture was proposed by the brilliant

engineers in our software industry. It led to defining specific properties

for each business component and having a dedicated service. An

individual business component or a single responsibility service is called a

microservice. In a big software application, multiple services work together

to accomplish a single goal that enables business.

Chapter 2 Web appliCation arChiteCture

13

Each microservice is independent of each other and has no impact on

the other microservices in any manner whatsoever.

Monolithic architecture is shown in Figure 2-1.

Figure 2-1. Monolithic architecture

Monolithic applications have a single instance. They are tightly

coupled and have a single datasource (usually). They have a single

deployable code base.

Microservices architecture is shown in Figure 2-2.

Chapter 2 Web appliCation arChiteCture

14

Figure 2-2. Microservices architecture

Microservices architecture consists of multiple deployments. Each

deployment is uniquely identified by a service name/endpoint. All of the

services are loosely coupled and have their own datasource (strictly). Each

service is deployed in a way that other services are not aware of, or the

deployment is independent of each other.

Hibernate1 is a typical example of Object Relational Mapping that ties

the database to the services in a programmer-friendly manner.

There is also a micro front end where we have the liberty to deploy and

manage the module-specific front end (a micro front end discussion is out

of scope of this book). Table 2-1 compares monolithic vs. microservices-

based architectures.

1 https://en.wikipedia.org/wiki/Hibernate_(framework)

Chapter 2 Web appliCation arChiteCture

https://en.wikipedia.org/wiki/Hibernate_(framework)

15

Table 2-1. Differences Between Monolithic vs. Microservices

Architecture

Categories Monolithic Microservices Notes

initial setup ☑ ☑ Microservices come with

infrastructure requirements so

initial setup takes time.

Faster

development

☑ Since the microservices are

independent, each team can work

independently without worrying

about any factors related to other

microservices whereas monolithic

application code is complex since

everyone is working on the same

code base.

Maintenance ☑ a microservices application

has low maintenance but

infrastructure maintenance is

required.

Deployment ☑ a monolithic application has a

single deployment, though it

may be tedious, but compared to

microservices, the difference is in

infrastructural changes.

(continued)

Chapter 2 Web appliCation arChiteCture

16

Table 2-1. (continued)

Categories Monolithic Microservices Notes

enhancements ☑ adding a new feature to a

monolithic application requires

a lot of thought since existing

designs may not support new

features and changes often come

with a risk factor. Microservices

are independent, so any new

enhancement/addition of a service

tends to be straightforward.

performance ☑ a monolithic application has

the advantage here since

multiple instances can be run

simultaneously compared to

microservices. however, it comes

with other challenges.

Security ☑ Security is a one-time setup for a

monolithic application.

ease of use ☑ a microservices application

has an advantage here. if, for

example, there are performance

issues in one service, this will

not impact the entire application.

the user can still use the other

workflows. but with monolithic

applications, the entire

application is at risk since it is a

single deployment.

(continued)

Chapter 2 Web appliCation arChiteCture

17

Table 2-1. (continued)

Categories Monolithic Microservices Notes

adaptability

to latest tech

stack

☑ Microservices can adapt to the

latest tech stack since they are

independent. So, the team can

decide and choose the best-

suited tools for their needs.

Debugging and

testing

☑ Since all code is at one place in a

monolithic application, it is easier

to debug and test.

end-to-end

testing

☑ end-to-end testing is easier

in monolithic applications

compared to microservices-based

applications, where end-to-end

testing is necessary on the user

interface.

Now that you understand that the architecture of a typical web

application that runs over web services/APIs, you can design test strategies

accordingly.

 Designing Test Strategies
Testing a monolithic web application is easier than testing a microservice.

To test a microservice, you need to implement additional stubs and/or

mock the APIs for end-to-end testing.

In the rest of the book, you will be using a monolithic web application

to learn API testing. You will review RESTful, HTTP, headers, requests, and

responses in the remaining sections to ensure you have a solid foundation

when working with monolithic web apps in future chapters.

Chapter 2 Web appliCation arChiteCture

18

A typical REST application architecture is shown in Figure 2-3.

Figure 2-3. REST application architecture

 RESTful Architecture
REST stands for REpresentational State Transfer. A REST service meets

the RESTful constraints called a RESTful service. Roy Fielding2 introduced

RESTful architecture in 2000.

The Web has evolved over a period of time from Web 1.0 to 2.0, 3.0, and

towards 4.03. Web 1.0 is for document sharing. Web 2.0 is people-centric

and supports the Internet as a platform. Web 3.0 is an executable web

that supports data sharing. Web 4.0 is a smart and intelligent web where

machines are smart enough to load content for humans.

2 https://en.wikipedia.org/wiki/Roy_Fielding
3 https://ijcsit.com/docs/Volume%205/vol5issue06/ijcsit20140506265.pdf

Chapter 2 Web appliCation arChiteCture

https://en.wikipedia.org/wiki/Roy_Fielding
https://ijcsit.com/docs/Volume%205/vol5issue06/ijcsit20140506265.pdf

19

When developing a web application for the World Wide Web, the

architecture should meet the growing needs and must include the

following non-functional requirements:

• Efficiency

• Performance and scalability

• Reliability

• Reusability

• Portability

• Modularity

...and a few more.

RESTful architecture is for software engineers. It addresses the non-

functional requirements by putting some constraints on developing an API.

A REST service that meet the constraints of RESTful4 architecture is

called a RESTful service. The constraints are as follows:

• Client-server architecture

• Statelessness

• Cacheability

• Use of a layered system

• Uniform interface

• Support for code on demand

Client-server architecture supports the separation of responsibilities.

The client is independent of the server. The client or the user interface can

be developed independently without knowing the internal details of the

server and its functions.

4 https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 2 Web appliCation arChiteCture

https://en.wikipedia.org/wiki/Representational_state_transfer

20

Statelessness helps in improving the overall performance of the server.

The server is not required to know or maintain the state/session of the

request. Its basic job is to provide the response without tracking the source

with a session. This is achieved by the HTTP protocol.

Caching helps in improving the performance. If the same request is

coming from various users, it can be cached. HTTP has a feature that helps

in caching the responses. This helps the server to be more efficient.

Using a layered system helps in addressing a few more concerns like

authentication and security. Having a layered system is beneficial for

debugging the root cause quickly.

A uniform interface is fundamental to the RESTful architecture. It

ensures that resources are identified based on the URI, such as /api/v1/

products. With respect to the uniform interface, it is good to go through

HATEOAS5 once.

Examples of support for code-on-demand are Java applets or

client-side JavaScripts. Having the above understanding is enough for

testing RESTful APIs. RESTful architecture uses HTTP as the protocol

for communication between the client and the server. Since HTTP

is a stateless protocol, RESTful architecture aims for scalability and

performance, and since HTTP internally calls TCP for the connection

between client and server, it is reliable as well. Let's discuss HTTP in detail

in the next section.

 HTTP
Hypertext Transfer Protocol (HTTP) is used for communication between

the client and the server in a typical web application.

HTTP exhibits RESTful architectural requirements.

5 https://en.wikipedia.org/wiki/HATEOAS

Chapter 2 Web appliCation arChiteCture

https://en.wikipedia.org/wiki/HATEOAS

21

The first basic version was HTTP 0.9. Later, with few updates, it was

released as HTTP 1.0. This version utilizes a separate connection for each

request.

The HTTP 1.1 version is the most popular and widely used version as

of now. This version solves the latency issue. The header metadata and the

message are in text format. HTTP 2.0 offers performance optimization on

the header metadata by using encryption; also, the message is multiplexed

between the client and the server for better performance. HTTP 3.0 is

currently under development; it uses UDP as the transport layer.

You will be using HTTP 1.1 throughout this book.

HTTP is an application layer6 protocol that works over a TCP (http://

default port 80) or TLS7 (https:// over port 443) encrypted TCP connection.

TCP is the most reliable protocol; it is guaranteed that the packets will be

sent/received 100% without any loss. In case of loss, an error message will

be sent to the receiver.

The HTTP protocol fetches the resource from the server based on

the request, such as fetching the HTML contents from the server or data

in a specified format. Before HTTP fetches the data from the server, the

client has to establish a connection with the server in order to fetch the

resources over HTTP. This is done by three-way communication between

the client and the server over a TCP layer. The client sends a connection

request on a given port to the server. The server acknowledges that the

request is received and then the client acknowledges the same. This way

a connection is established between the client and the server. Now with

HTTP, the client can fetch the required information from the server. Once

the connection is established, the client can send multiple requests over

HTTP and the server will send the response to each request.

6 https://en.wikipedia.org/wiki/Application_layer
7 https://en.wikipedia.org/wiki/Transport_Layer_Security

Chapter 2 Web appliCation arChiteCture

https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Transport_Layer_Security

22

The HTTP protocol is simple, extensible, and stateless. We can read the

headers and the message body. In case of a change in the header(s) usage

or semantics, it can be adapted easily between the client and the server.

The server does not remember the state of the request. It just sends the

requested data and opens for new requests.

HTTP supports a caching mechanism. Clients can send information

in the request header to store the response in a cache for a stipulated

amount of time for later use for faster performance. HTTP also supports

CORS8; that is, if the request body or the HTML has a different domain,

this will be served to the client. HTTP also works on sessionId. The client

sends a request and the server sends the sessionId in response. Later, this

sessionId can be used to authenticate the request. A typical server has a

proxy in between to hide the server IP from hackers. HTTP supports proxy

servers that mimic the real server in real time.

Figure 2-4 summarizes the steps of an HTTP connection between the

client and the web server. Step 1 establishes the TCP connection between

the client and the server. Step 2 fetches the resources from the server over

HTTP. With a single TCP connection, a client can send multiple requests

and the server will respond to the required information over HTTP.

8 https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Chapter 2 Web appliCation arChiteCture

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

23

Figure 2-4. Client-server communication

 Headers
Headers are a part of each HTTP request/response, and they define the

flow of the information between the client and server. The most common

fields in headers9 are Content Type, Content Length, Host, User-Agent,

Accept, Accept Encoding, Accept Language, Connection, Cache Control,

Age, Date, Expires, and Keep-Alive.

Headers are logically grouped into three categories: request headers,

response headers, and general headers. This can be seen in the network

tab of the browser after sending the request.

Request headers mainly have Authorization, Host, Accept, Accept-

Language, Accept-Encoding, and Content-Type fields. The Authorization

field is used for authentication with the server. It specifies that the request

is coming from the authorized client.

9 https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Chapter 2 Web appliCation arChiteCture

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

24

Response headers have Expires, Content-Length, Content-Type,

Cache-Control, Date, and Keep-Alive fields. Content-Type provides the

response type format, such as whether the response is in JSON or plain

text. Keep-Alive is the timeout in seconds that is the allowed time for a

connection to remain open.

General headers have information about the Request URL, Request

Method, Status Code, Remote Address, and Connection. Figure 2-5

depicts the Header grouping from the Google Chrome browser.

Figure 2-5. HTTP headers in the Google Chrome Network tab

There is one more category of headers named representation headers,

with Content-Type, Content-Length, and other fields related to the

presentation of the response.

Most of the fields are self-explanatory and do not require detailed

discussion. From the API testing point of view, it is critical to know the

most commonly used header fields, which are mentioned in this section.

You will see headers in action in the coming chapters.

Chapter 2 Web appliCation arChiteCture

25

 Requests
The client starts communication with the server using an HTTP request.

The request has a request method, resource address (on the server) URI,

request header(s), and a request body, which is optional.

 Request Methods
Request methods are the actions that the client wants to perform on the

server resource. The most common methods used in developing API-

based software applications are GET, POST, PUT, and DELETE. Others are

TRACE, UPDATE, HEAD, CONNECT, OPTIONS, TRACE, and PATCH.

The GET method is used to retrieve the information from the server.

The POST method is used to add a new object to the server resource. The

PUT method is used to update the existing object on the server resource.

The DELETE method is used to delete the object on the server resource.

GET, PUT, and DELETE are idempotent methods; that is, if you execute

the same call multiple times, the result will be the same. GET is also a safe

method where no harm is made if you execute the call multiple times.

 Resource Addresses
A resource address is defined by a URI, where URI stands for Uniform

Resource Identifier. It is the identifier of the resource on the server, called

as the endpoint of the service, such as /api/v1/products.

 Request Headers
A request header contains an authentication field, which authenticates

the request on the server, and Content-Type, which specifies the type of

content expected from the server resource. (There are other headers based

on the requirements.) You will learn about standard authentications in the

next chapter.

Chapter 2 Web appliCation arChiteCture

26

 Request Body
The request body has a format to be followed, which is understood by the

server resource or the service endpoint. Usually, the response body is in a

JSON or XML format.

Table 2-2 shows an example of a GET request. In this request, the

endpoint returns the list of the products, so the request body is not

required.

Table 2-2. HTTP GET Request

request line GET, /api/v1/products

request headers Authentication : Bearer eyJhbGciO...

Request body

Table 2-3 shows an example of a POST request. The request message

will look like below. Since you are creating an object on the server

resource, the request body has the details about the object that needs to be

created.

Table 2-3. HTTP POST Request

request line POST, /api/v1/products

request headers Authentication : Bearer eyJhbGciO...

request body {

 "productId": 1001,

 "product_name": "iPad",

 "product_price": 500

}

Chapter 2 Web appliCation arChiteCture

27

Table 2-4 offers an example of a PUT request that is updating the

product price for productId 1001.

Table 2-4. HTTP PUT Request

request line put, /api/v1/products/1001

request headers Authentication : Bearer eyJhbGciO...

request body {

 "productId": 1001,

 "product_price": 700

}

Table 2-5 shows an example of a DELETE request. Here you are deleting

productId 1001. You don't need the request body, so it is empty.

Table 2-5. HTTP DELETE Request

request line Delete, /api/v1/products/1001

request headers Authentication : Bearer eyJhbGciO...

Request body

 Response
When the request reaches the server, it sends the response. The

protocol used here is HTTP. It has a status line, response headers, and a

message body.

 Status Line
The status line lists the protocol version, the return status code, and the

status text. We will discuss status codes in the next section. Status codes

are commonly known as response codes.

Chapter 2 Web appliCation arChiteCture

28

 Response Header
The response header contains the information sent by the server to define

the response message, such as Content-Length and Content-Type.

 Response Body
The response body is the response message that is sent by the server to

the client based on the request on the given resource. Table 2-6 presents

an example of a GET request. The server found the resource and it has

returned the response with success.

Table 2-6. HTTP GET Response

Status line HTTP/1.1 200 OK

response header Content-Type : application/json

response body {

 "productId": 1001,

 "product_name": "iPad",

 "product_price": 500

}

For all request methods, the HTTP response has the same format of

status line, response headers, and a response body.

 Response Codes
HTTP responses have a status line that contains the status code of the

response. From the response code we can understand if the response from

the server is successful or not. Response codes are grouped in various

classes based on the characteristics of the response. The most common

groupings are as follows:

Chapter 2 Web appliCation arChiteCture

29

• Information: 1XX-199

• Success: 2XX-299

• Redirect: 3XX-399

• Error from client: 4XX-499

• Error from server: 5XX-599

A few examples of status codes are as follows:

• The 102 status code in the status line signifies that the

request from the client is received and the server is

working on the response.

• The 200 status code signifies that the request from the

client is successful and accepted by the server.

• The 302 status code signifies that the request is

redirected to another resource.

• The 400 status code signifies that the request from the

client is erroneous.

• The 500 status code signifies that the server is not

reachable or there is a server error.

The list is big10, but you just need to remember the few that are

commonly used in API-based software applications. Knowing the response

code is important for API testing because the consumer of the API should

know the response from the server, and in case of error, corrective actions

can be made.

10 https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 2 Web appliCation arChiteCture

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

30

 Summary
In this chapter, you learned about web-based application architecture

types, which are commonly used industry wide. You also went through the

communication aspects between a client and server and those attributes.

You learned about HTTP, HTTP headers, HTTP requests, HTTP responses,

and various response codes in a typical web-based application. In the next

chapter, you will learn about standard authentications.

Chapter 2 Web appliCation arChiteCture

31

CHAPTER 3

Authentication
This chapter will help you gain knowledge about the different types of

authentications used in web-based software applications.

By the end of this chapter, you should have a good idea of the standard

authentication mechanism used in developing web-based applications.

You will also get an idea about authorization mechanisms. If you are

already familiar with these concepts, you may proceed to the next chapter.

Authentication is a way to verify a user before they log into an

application, and authorization defines what the user can access. Consider

a person who buys an economy class plane ticket to Honolulu, Hawaii.

They go to the airport and the ground staff checks their ticket and passport

for (identity) authentication to verify their entitlement to board a particular

flight. When they enter the plane, the staff directs them to economy class

seating because they are not authorized to sit in the business class seats.

For API testing, you will be targeting HTTP authentication and a little

bit of authorization.

 HTTP Authentication
Let’s go over the most commonly used HTTP authentication types for

accessing an API.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_3

https://doi.org/10.1007/978-1-4842-8142-0_3#DOI

32

 Basic Authentication
HTTP basic authentication1 is a very simple authentication mechanism to

access APIs. The user agent sends the username and password encoded in

a variant of Base642 (RFC7617). This is not encrypted but merely encoded.

The username and password can be passed in a header request as

follows:

Authorization: Basic amFnZGVlcDp0ZXN0MTIz

You can also pass the username and password as a parameter from

a user agent like Postman. This is not secure and can be easily hacked by

anyone who has a little knowledge of gathering keystrokes.

 Session-Based Authentication
For accessing resources on the server over HTTP, the client reserves a

session with an identification on the server and further communication is

established using the same identification. The server sends a SESSIONID

in the header response to the client and further communication is

established based on the SESSIONID on the server.

In a Java-based application, the server sends a cookie in the header

response as shown:

Set-Cookie: JSESSIONID=B6A7F58E7F5AC8FE2B1C6F8E15F93E84;

The client uses this session identification and sends it in a header

request as a cookie to access the API resources.

Cookie: JSESSIONID=B6A7F58E7F5AC8FE2B1C6F8E15F93E84

1 From: Sai Matam and Jagdeep Jain, Pro Apache JMeter (Apress, 2017)
2 www.base64encode.org/

Chapter 3 authentiCation

http://www.base64encode.org/

33

Sessions are short lived, and we can set the expiration time in the

header. This method is mostly used in shopping cart applications where

a session is established between the client and the server until the user

performs the payment, closes the browser, or the session is invalidated.

Another method is URL rewriting. This is an insecure way of

communicating with the server. If a hacker gets hold of the SESSIONID,

they can do things as per their free will.

 Token/JWT-Based Authentication
A user logs into the application using the credentials and gets a token to

access the application. The token is valid for a certain period of time, so

accessing it after the time limit requires a new token to be generated by

the server. It is like a ticket to a movie theater where you have access to a

certain movie for a certain period of time.

A token supports a stateless connection over HTTP where the server

sends the token to the client as a header response. After that, each time the

client requests a resource, the token needs to be sent in the header.

The server sends the token in the response header on the /auth

(authenticating a user) call.

Authorization: eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImV4c

CI6MTYzODgxNDQxNSwiaWF0IjoxNjM4ODEyNjE1fQ.UVAmFYlDn0X5GhF987

Wz8p0bABDoHWI7KujPCb99x- 8

The client sends the bearer token in the request header, as shown:

Authorization: Bearer eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1pbi

IsImV4cCI6MTYzODgxNDQxNSwiaWF0IjoxNjM4ODEyNjE1fQ.UVAmFYlDn0X

5GhF987Wz8p0bABDoHWI7KujPCb99x- 8

Chapter 3 authentiCation

34

This says that the bearer of the token should be given access to the

server resources. The server does not need to remember the session or the

state. Instead, this is taken care of by the client via the token. This helps in

improving the performance of the server.

JWT stands for JSON Web Token. It is one of the formats of the token

formed by the server. It is defined as an open standard in RFC7519 as

transmitting information between the client and the server via a JSON

object. JSON is lightweight and less verbose compared to the other formats

and is a preferred token-based authentication format.

Look at the two dots in the JWT. It has three parts: header, payload,

and signature. Figure 3-1 presents a screenshot of jwt.io3 and shows the

decoded token.

Figure 3-1. JWT Decoder jwt.io

3 https://jwt.io/

Chapter 3 authentiCation

https://jwt.io/

35

The jwt.io screenshot is self-explanatory. The header contains the

algorithm and the token type. The payload is the data. The signature makes

sure that the data has not changed during transit.

 OAuth2-Based Authentication
Basic and session-based authentications are not reliable and are not the

most robust ways of undertaking authentication. They may lead to various

problems in terms of security and performance.

The OAuth framework was developed for ease of use, better security,

and better access control of the resources on the server.

OAuth 1.0 is the first version of the OAuth protocol. OAuth 2.04

(RFC6749) was developed after the identification of the limitations and

drawbacks of earlier versions. OAuth 2.0 is completely different from

OAuth 1.0. It is a full rewrite and is not backward compatible.

OAuth 2.0 introduces a layer for authorization in the workflow of a

typical usage of the service, or the API endpoint, or the server resource. It

also introduces terminology called roles to make it easier for developers.

These roles are as follows:

• Client: A user-agent, such as a browser or a mobile

device, from which the request is made to access the

resources on the server

• Resource owner: The actual user who owns the

resources on the server, or who has access permission

on the server

4 https://datatracker.ietf.org/doc/html/rfc6749

Chapter 3 authentiCation

https://datatracker.ietf.org/doc/html/rfc6749

36

• Authorization server: The layer that separates the

client and the resource owner. This server provides the

access token to the client or the user-agent through

which the client or the user-agent gains access to the

resources on the server.

• Resource server or resource provider: The server

where resources are kept, or the API endpoints through

which resources can be accessed

In Figure 3-2, the user-agent requests authorization from the resource

owner, and the resource owner provides the grant to the user agent.

Figure 3-2. Token-based authorization

The user-agent then goes to the authorization server to get the access

token, and the authorization server provides the access token. The user-

agent requests the resource from the server with the access token, and the

resource server provides the required response to the user-agent.

Chapter 3 authentiCation

37

OAuth 2.0 has an additional workflow known as a refresh token. When

the token expires, the user-agent uses the refresh token to get the new

access token.

OAuth 2.0 uses JWT as a token format and uses an authorization

header with a bearer token just like JWT.

With OAuth, we conclude discussion on authentication types.

You have gone through old and new authentication types used in web

application development. Having a good knowledge of the authentication

types makes the job of testing the endpoints much easier. In the next

section, we will briefly discuss the standard authorization used in the

industry.

 Authorization
Authorization helps organizations manage resources among various user

types as per their respective work profiles. This is helpful in various ways

for a user, an employee, and an organization. We will discuss the most

widely used authorization types in the sections below.

 RBAC
RBAC stands for role-based access control. In a typical software

application, access to the users is granted based on their role in the

organization. For a CRM application, the sales and marketing team has

a different role than the stores, operations, or finance teams. Admin may

not have visibility to these departments but can manage the roles and

permissions. A few may have view-only permission while others may have

write permission as well.

Chapter 3 authentiCation

38

RBAC is very commonly used industry wide. It is suitable for

organizations of all sizes, be they very small or very large. It offers several

advantages, such as accessing, security risk assessment and management,

in addition to significant improvements in employee productivity,

communication, and collaboration.

RBAC helps in assigning users certain roles and assigning permission

levels to each role. A user can have different roles and a role can have

different permissions.

With respect to API testing, we can make sure that the user who does

have write permission can do CRUD operations, and the user who doesn’t

have write permission cannot.

 ABAC
ABAC stands for attribute-based access control. It is an alternative to

RBAC. In this authorization type, the user is granted a role based on an

attribute. For example, only employees in the Asia Pacific region can

access APAC region files. Others are denied access upon trying to access

the files of the APAC region.

Authentication and authorization are vast topics, and a dedicated

book can be written on them. We will limit our discussion based on our

requirements.

 Authentication and Authorization Services
Authentication and authorization services are provided by a few vendors.

Okta, RSA, and Ping Identity are few who provide IAM (Identity Access

Management) as a service. These services are used by various software

companies and thus save development cost and resources time.

Chapter 3 authentiCation

39

Google, Twitter, and Microsoft use OAuth 2.0 for authentication of

their services. These companies also provide authentication for third-party

user-agents/applications.

 Summary
In this chapter, you learned about standard authentication and

authorization used in developing web-based applications. You now

know about the various authentication types used by APIs for user

authentication as well as a little bit on authorization. In the next chapter,

you will use your knowledge from the first three chapters and perform

testing on the APIs for a contact management application.

Chapter 3 authentiCation

41

CHAPTER 4

Tools, Frameworks,
and Libraries
This chapter will help you gain insight into the tools used for testing API-

based software applications and writing test automation scripts. In this

chapter, you will also explore the useful frameworks and libraries used in

test automation script development.

Before starting this chapter, you should read Appendix B and deploy

the sample application that you will be using as a demo application

for testing. Also, you should go through the API endpoints provided in

the sample application that you will be using to learn API testing with

industry-standard tools.

At the end of this chapter, you should have a good idea of the standard

API testing applications, frameworks, and libraries that are used to test and

write automation test scripts.

To write software applications, we use an IDE (integrated development

environment). It is a daily job for a software developer to write new code

in an IDE and debug the issues reported by the testing engineer. There are

API testing applications that have made the testing of APIs very easy. You

just need to add a few things to configure a test in the tool and you can

test API endpoints. In this book, you will use Java as the test automation

language to write a standard test automation script. You can, however, use

any other language at your discretion.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_4

https://doi.org/10.1007/978-1-4842-8142-0_4#DOI

42

For quick API testing, you could use one of the standard software

applications we will be discussing in the sections below. Also, for writing

a standard test script, you will go through a few frameworks and libraries,

which you will be using in the upcoming chapters to write a testing

framework.

 API Testing Tools
Let’s explore the software/tools used industry-wide for testing API

endpoints. cURL is a Linux tool. Postman is a browser/desktop-based

software application. RestAssured is an open source Java-based framework

for writing BDT (behavior-driven testing) scripts.

Let’s discuss each of these in the sections below.

 cURL
Client URL (cURL) is a Linux tool for communication between two

machines. It is the most common command line tool for testing APIs. Let’s

discuss how to use this tool for API endpoint testing. Mostly it is used by

developers to quickly test the API they are developing.

Every application requires authentication before accessing its

resource(s). You will start with authentication and then use common

HTTP methods with cURL to verify the response. This tool can be mixed

with various programming languages as well for automation testing.

 Authentication

For RESTful services, which have an authentication server that

authenticates the user, a token is generated to access the resource on the

server. This must be passed as a bearer token for authentication using a

cURL command.

Chapter 4 tools, Frameworks, and libraries

43

For contact management services, the authentication endpoint is /

auth/authenticate.

Since it is a POST method, you need to pass the required arguments to

the cURL command.

Once the application is ready, enter the following command in the

terminal window to get the bearer token:

$ curl -d '{"userName": "admin", "password": "test123"}'

-H 'Content-Type: application/json' http://localhost:8080/app/

auth/authenticate -v

-d is used to pass the data.

-H is used to pass metadata in the header.

-v is used for verbose and it contains the header response and the

authorization bearer token.

The following is the response, including the headers. The authorization

token is highlighted in bold.

* Trying ::1...

* TCP_NODELAY set

* Connected to localhost (::1) port 8080 (#0)

> POST /app/auth/authenticate HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.64.1

> Accept: */*

> Content-Type: application/json

> Content-Length: 44

>

* upload completely sent off: 44 out of 44 bytes

< HTTP/1.1 200

< Authorization: eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1pbiIs

ImV4cCI6MTY0ODk2OTkxMiwiaWF0IjoxNjQ4OTY4MTEyfQ.VDbBzHLjjfDJg

MmYZHwbR_l36l__0ZKy5XK8vhT3cZM

Chapter 4 tools, Frameworks, and libraries

44

< Content-Type: application/json;charset=UTF-8

< Transfer-Encoding: chunked

< Date: Sun, 03 Apr 2022 06:41:52 GMT

<

* Connection #0 to host localhost left intact

{"password":"$2a$10$cyztG895P5ViBcTF7WM60eQ7TRreIvXdNc/WWIgBIQT

563PhOyCGe","username":"admin","enabled":true,"authorities":

[{"authority":"ROLE_ADMIN"},{"authority":"ROLE_USER"},

{"authority":"ROLE_MGR"}],"accountNonExpired":true,"account

NonLocked":true,"credentialsNonExpired":true}* Closing

connection 0

 POST

The POST method has a payload that is sent to the server from the client.

You also need to pass the token while sending the request. Copy the token

from the output of the above command and pass in the POST command.

Once the application is started, enter the following command in the

terminal window:

$ curl -d '{ "firstName": "Firstname", "lastName":

"Lastname", "email": "firstname@fl-testing.com"}' -H

'Content-Type: application/json' -H 'Authorization: Bearer

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImV4cCI6MTY0ODk

2OTkxMiwiaWF0IjoxNjQ4OTY4MTEyfQ.VDbBzHLjjfDJgMmYZHwbR_

l36l__0ZKy5XK8vhT3cZM' http://localhost:8080/app/api/v1/

contacts -v

-d is used to pass the data; this is the payload for adding the contact to

the contact management application.

-H is used to pass metadata in the header; you are passing a bearer

token in the header for authentication.

-v is used for verbose.

Chapter 4 tools, Frameworks, and libraries

45

The following is the response, including the headers:

* Trying ::1...

* TCP_NODELAY set

* Connected to localhost (::1) port 8080 (#0)

> POST /app/api/v1/contacts HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.64.1

> Accept: */*

> Content-Type: application/json

> Authorization: Bearer eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1

pbiIsImV4cCI6MTY0ODk2OTkxMiwiaWF0IjoxNjQ4OTY4MTEyfQ.VDbBzHLjj

fDJgMmYZHwbR_l36l__0ZKy5XK8vhT3cZM

> Content-Length: 88

>

* upload completely sent off: 88 out of 88 bytes

< HTTP/1.1 201

< Location: http://localhost:8080/app/api/v1/contacts/1004

< X-Content-Type-Options: nosniff

< X-XSS-Protection: 1; mode=block

< Cache-Control: no-cache, no-store, max-age=0, must-revalidate

< Pragma: no-cache

< Expires: 0

< X-Frame-Options: DENY

< Transfer-Encoding: chunked

< Date: Sun, 03 Apr 2022 06:51:43 GMT

<

* Connection #0 to host localhost left intact

* Closing connection 0

Chapter 4 tools, Frameworks, and libraries

46

The 20X response signifies that the POST request is successful, and the

record is created as per the payload.

In the following section, you’ll verify using a GET call if the record is

added successfully or not.

 GET

The GET method is usually used for retrieving information from the server.

You also need to pass the token while sending the request. The API expects

the contactId; you will pass the contactId of the contact created with the

help of the POST request.

Once the application is started, enter the following command in the

terminal window:

$ curl -H 'Content-Type: application/json' -H 'Authorization:

Bearer eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImV4cCI6M

TY0ODk2OTkxMiwiaWF0IjoxNjQ4OTY4MTEyfQ.VDbBzHLjjfDJgMmYZHwbR_

l36l__0ZKy5XK8vhT3cZM’ http://localhost:8080/app/api/v1/

contacts/1004 -v

-H is used to pass metadata in the header; you are passing a bearer

token in the header for authentication.

-v is used for verbose.

The following is the response, including the headers:

* Trying ::1...

* TCP_NODELAY set

* Connected to localhost (::1) port 8080 (#0)

> GET /app/api/v1/contacts/1004 HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.64.1

> Accept: */*

> Content-Type: application/json

Chapter 4 tools, Frameworks, and libraries

47

> Authorization: Bearer eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG

1pbiIsImV4cCI6MTY0ODk2OTkxMiwiaWF0IjoxNjQ4OTY4MTEyfQ.VDbBzHLjj

fDJgMmYZHwbR_l36l__0ZKy5XK8vhT3cZM

>

< HTTP/1.1 200

< X-Content-Type-Options: nosniff

< X-XSS-Protection: 1; mode=block

< Cache-Control: no-cache, no-store, max-age=0, must-revalidate

< Pragma: no-cache

< Expires: 0

< X-Frame-Options: DENY

< Content-Type: application/json;charset=UTF-8

< Transfer-Encoding: chunked

< Date: Sun, 03 Apr 2022 06:58:36 GMT

<

* Connection #0 to host localhost left intact

{"id":1004,"firstName":"Firstname","lastName":"Lastname",

"email":"firstname@fl-testing.com"}* Closing connection 0

The 200 response signifies the success of the GET request with the

contact being retrieved, which you created using the POST method.

In the following section, you’ll update this record using the

PUT method.

 PUT

The PUT method is usually used for updating the record on the server. You

also need to pass the token while sending the request.

The record you created has an id of 1004. Therefore, you need to pass

the id on the URL to inform the server that this id needs to be updated.

Chapter 4 tools, Frameworks, and libraries

48

Once the application is started, enter the following command in the

terminal window:

$ curl -d '{ "firstName": "Sudeep", "lastName": "Tripathy",

"email": "st@learn-api-testing.com"}' -H 'Content-Type:

application/json' -H 'Authorization: Bearer eyJhbGciOiJIUzI1

NiJ9.eyJzdWIiOiJhZG1pbiIsImV4cCI6MTY0ODk2OTkxMiwiaWF0IjoxNjQ4O

TY4MTEyfQ.VDbBzHLjjfDJgMmYZHwbR_l36l__0ZKy5XK8vhT3cZM' -X PUT

http://localhost:8080/app/api/v1/contacts/1004 -v

-d is used to pass the data; it is the payload for adding the contact to

the contact management application.

-H is used to pass metadata in the header; you are passing the bearer

token in the header for authentication.

-X is used to notify the cURL command that is called with the specific

method to be executed on the server; you also add PUT in the call to make

sure the server understands it as an update operation.

-v is used for verbose.

The following is the response, including the headers:

* Trying ::1...

* TCP_NODELAY set

* Connected to localhost (::1) port 8080 (#0)

> PUT /app/api/v1/contacts/1004 HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.64.1

> Accept: */*

> Content-Type: application/json

> Authorization: Bearer eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1p

biIsImV4cCI6MTY0ODk2OTkxMiwiaWF0IjoxNjQ4OTY4MTEyfQ.VDbBzH

LjjfDJgMmYZHwbR_l36l__0ZKy5XK8vhT3cZM

> Content-Length: 85

>

Chapter 4 tools, Frameworks, and libraries

49

* upload completely sent off: 85 out of 85 bytes

< HTTP/1.1 200

< Location: http://localhost:8080/app/api/v1/contacts/1004

< X-Content-Type-Options: nosniff

< X-XSS-Protection: 1; mode=block

< Cache-Control: no-cache, no-store, max-age=0, must-revalidate

< Pragma: no-cache

< Expires: 0

< X-Frame-Options: DENY

< Transfer-Encoding: chunked

< Date: Sun, 03 Apr 2022 07:05:44 GMT

<

* Connection #0 to host localhost left intact

* Closing connection 0

The 200 response signifies that the PUT request is successful so you

have successfully updated the resource on the server. This can be verified

by using the GET call.

In the next section, you’ll delete this record using the DELETE method.

 DELETE

The DELETE method is usually used for deleting the record on the server.

You also need to pass the token while sending the request.

The record you created has the id of 1000, so you need to pass the id

on the URL to inform the server that the record with this id needs to be

deleted.

Once the application starts, enter the following command in the

terminal window:

$ curl -H 'Authorization: Bearer eyJhbGciOiJIUzI1NiJ9.eyJzdWIiO

iJhZG1pbiIsImV4cCI6MTY0ODk2OTkxMiwiaWF0IjoxNjQ4OTY4MTEyfQ.

VDbBzHLjjfDJgMmYZHwbR_l36l__0ZKy5XK8vhT3cZM' -X DELETE http://

localhost:8080/app/api/v1/contacts/1004 -v

Chapter 4 tools, Frameworks, and libraries

50

-H is used to pass metadata in the header; you are passing bearer token

in the header for authentication.

-X is used to notify the cURL command that is called with the specific

method to be executed on the server; you also add DELETE in the call to

make sure the server understands it as a delete operation.

-v is used for verbose.

The following is the response, including the headers:

* Trying ::1...

* TCP_NODELAY set

* Connected to localhost (::1) port 8080 (#0)

> DELETE /app/api/v1/contacts/1004 HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.64.1

> Accept: */*

> Authorization: Bearer eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJh

ZG1pbiIsImV4cCI6MTY0ODk2OTkxMiwiaWF0IjoxNjQ4OTY4MTEyfQ.

VDbBzHLjjfDJgMmYZHwbR_l36l__0ZKy5XK8vhT3cZM

>

< HTTP/1.1 204

< X-Content-Type-Options: nosniff

< X-XSS-Protection: 1; mode=block

< Cache-Control: no-cache, no-store, max-age=0, must-revalidate

< Pragma: no-cache

< Expires: 0

< X-Frame-Options: DENY

< Date: Sun, 03 Apr 2022 07:09:07 GMT

<

* Connection #0 to host localhost left intact

* Closing connection 0

Chapter 4 tools, Frameworks, and libraries

51

The 204 response signifies that the DELETE request is successful, so you

have successfully deleted the resource on the server. This can be verified

by using the GET call, which will not return any records.

Other HTTP methods can be used in a similar way.

This concludes the basics of cURL commands for API testing via

the command prompt. In the next section, you will test the same API

endpoints via a GUI using another popular tool.

cURL commands are located at https://github.com/apress/

learn-api-testing.

 Postman
Postman is an industry-standard GUI tool for developing and testing

APIs. It has various advantages, such as sharing the tests with other team

members with the help of import/export. Also, a single workplace can

be used to develop/share the tests. You can also add authentication,

parameterize, and assertions at the collections that can be used by all

API tests underneath. In short, you can organize tests in a professional

way, and it is much better to use and collaborate with Postman compared

to cURL.

You will be using the same set of API endpoints as in the above section

for the demonstration of the Postman GUI. You will also learn how to

configure a test and have an assertion in place.

 Workspace

The workspace is where you have collections (see Figure 4-1). You can

create more than one workspace. It is like a project workspace in Eclipse or

any other IDE.

Chapter 4 tools, Frameworks, and libraries

https://github.com/apress/learn-api-testing
https://github.com/apress/learn-api-testing

52

Figure 4-1. Postman collections

 Globals/Environments

Postman has a concept of global variables (see Figure 4-2) that can be used

anywhere in the current workspace. Environment variables can be used in

the request call of the API.

Figure 4-2. Postman globals and environments

Chapter 4 tools, Frameworks, and libraries

53

 Collection

Postman collections can help group similar API calls (see Figure 4-3). You

can also create folders inside a collection for subgroupings.

Inside a collection, you can use global variables, set authentication,

do tests, and perform prerequest scripts. All API calls have access to its

collection, and it’s up to the API configuration to use it or not.

 Authentication

You can set a JWT token as one of the global variables via an auth/

authenticate API call and utilize the same in all API endpoints as the

authorization header.

Figure 4-3. Postman collection

Chapter 4 tools, Frameworks, and libraries

54

Figure 4-4 shows the script to store the auth_token global variable.

Figure 4-4. Setting a JWT token using Postman globals

The collection is configured to use the global variable, as shown in

Figure 4-5.

Figure 4-5. Postman collection configuration

Chapter 4 tools, Frameworks, and libraries

55

 Parameters

Test parameters can be configured in the collection. Figure 4-6 shows that

the test_url variable is configured as http://localhost:8080.

 Assertions

You can have assertions set at the collection level, which will run after

every API request. You can also configure additional assertions at the

request level.

See line #4 in Figure 4-7 for the assertion code. This is a JavaScript

notation.

Figure 4-6. Postman variable configuration

Chapter 4 tools, Frameworks, and libraries

56

Figure 4-7. Postman assertion

Check the Postman docs for details on test script assertions1. Postman

tests are located at https://github.com/apress/learn-api-testing. You

can import this into your workspace before starting the following section.

This will help you understand the request quickly.

 Requests

A request defines the API endpoint that you want to test. In the Postman

GUI, click the three dots on the given collection where you want to create

a request and select the Add request menu option. Figure 4-8 shows the

navigation to add a new request for a given collection.

1 https://learning.postman.com/docs/writing-scripts/script-references/
test-examples/

Chapter 4 tools, Frameworks, and libraries

https://github.com/apress/learn-api-testing
https://learning.postman.com/docs/writing-scripts/script-references/test-examples/
https://learning.postman.com/docs/writing-scripts/script-references/test-examples/

57

Figure 4-8. Postman’s Add request option

Figure 4-9. Postman POST request

HTTP Methods

Once the request is created, click the Method drop-down and select the

appropriate HTTP method. Figure 4-9 shows the selection of POST as the

method type for the given request.

Chapter 4 tools, Frameworks, and libraries

58

Authentication

You need to use the request authentication, which is configured in the

collection as a global variable. Click Authorization from the Request

submenu and set the authorization to Inherit auth from parent.

Variables

Variables are used for configuring tests. For example, you can configure the

test application URL and use the variable in API endpoints.

Variables are used with curly braces. For example, in the request for

the POST call, you use {{test_url}} as the application URL.

Authentication and variable usage is shown in Figure 4-10.

Figure 4-10. Postman authorization

Chapter 4 tools, Frameworks, and libraries

59

Authorization is done using a JWT token. This is set by the auth/

authenticate call. You need to pass user credentials to get the

authorization token from the authorization server. Figure 4-11 shows

passing the user credentials to get the authorization token.

You have already seen how to store the authorization token in the

global variable auth_token in the “Authentication” section. This will set

the global variable, and further request calls will use the same variable for

authentication.

Console

Interactions with requests can be seen in the Postman console. It is good to

open the console since it helps in debugging the request.

Figure 4-11. User credentials

Chapter 4 tools, Frameworks, and libraries

60

From the Tests submenu in the request, you can add JavaScript code

to print the response as well. The following code snippet can be added to

Tests submenu of the auth/authenticate call to make sure that the auth_

token global variable is set:

console.info(pm.globals.get("auth_token"));

Figure 4-12 shows the auth/authenticate request in the Tests

submenu with the above code snippet usage.

Click the Console button, visible at the bottom left of the Postman GUI,

to open the console. Figure 4-13 shows the console.

Figure 4-12. Postman tests

Chapter 4 tools, Frameworks, and libraries

61

Figure 4-13. Postman console

POST

For a post request, you need to pass in the payload, provide the

authorization, and add tests, if any.

 1. Click the Body submenu, add the required payload,

select raw from the submenu, and select JSON. In

the text area, add the payload.

 2. Click the Auth submenu and select Inherit from

the parent.

 3. Click the Tests submenu and add the JavaScript

code for the assertion(s).

Chapter 4 tools, Frameworks, and libraries

62

Let’s use the contact management sample application to test the given

endpoints.

Trigger the auth/authenticate endpoint from the collection to get the

authentication token.

Select Create Contact endpoint from the collection and click the Send

button on the request. Check the console logs for details. It will show 201

as the response status code, which indicates that the request is successful.

GET

For a GET request, there is no payload. The steps are similar for

authorization for all requests that are selected that inherit from the parent.

Select Find Contact endpoint from the collection and click the Send

button on the request. Check the console logs for details. It will show 200

as the response status code, which indicates that the request is successful.

PUT

For a PUT request, add the required payload. Select Update Contact

endpoint from the collection and click the Send button on the request.

Check the console logs for details. It will show 200 as the response status

code, which indicates that the request is successful.

DELETE

For a delete request, there is no payload. Select the Delete Contact

endpoint from the collection and click the Send button on the request.

Check the console logs for details. It will show 204 as the response status

code, which indicates that the contact is deleted. Again, click the find

contact; it will show 404 as the response status code, which indicates that

the request is having a problem.

Figure 4-14 shows all the requests in the console.

Chapter 4 tools, Frameworks, and libraries

63

Figure 4-14. Postman console showing requests

Postman is a pretty good tool for developers as well as testers while the

APIs are in the development stage2. In the next section, you will explore

RestAssured.

Postman scripts are located at https://github.com/apress/learn-

api-testing.

 RestAssured
RestAssured is an open source REST API testing framework developed

and maintained by Johan Haleby3. It supports various languages like

Java, Kotlin, and Scala. It makes the tester’s life easier by allowing them

to concentrate on the test rather than worrying about how the request is

being served to the server and reading the response from the server. It is

a complete package where you can write the code to send requests to the

server, read the response from the server, and perform various assertions.

2 https://learning.postman.com/docs/getting-started/introduction/
3 https://twitter.com/johanhaleby

Chapter 4 tools, Frameworks, and libraries

https://github.com/apress/learn-api-testing
https://github.com/apress/learn-api-testing
https://learning.postman.com/docs/getting-started/introduction/
https://twitter.com/johanhaleby

64

RestAssured has its own DSL and works on give/when/then. You will

exploit its features to write more robust and atomic tests in upcoming chapters.

You’ll use RestAssured to do the same operations that you did using

cURL and Postman.

Set up a Maven project using the following simple steps:

$ mvn archetype:generate -DgroupId=com.contact.mgmt

 -DartifactId=restassured-tests -DarchetypeArtifactId=maven-

archetype-quickstart -DarchetypeVersion=1.4

-DinteractiveMode=false

Change the directory to the created project and update the pom.xml

with the required dependencies. You can overwrite the existing pom.xml

with the following code snippet:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.contact.mgmt</groupId>

 <artifactId>restassured-tests</artifactId>

 <packaging>jar</packaging>

 <version>1.0-SNAPSHOT</version>

 <name>Contact Management API Test</name>

 <url>http://maven.apache.org</url>

 <properties>

 <maven.test.skip>false</maven.test.skip>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-engine</artifactId>

Chapter 4 tools, Frameworks, and libraries

65

 <version>5.6.2</version>

 </dependency>

 <dependency>

 <groupId>org.junit.vintage</groupId>

 <artifactId>junit-vintage-engine</artifactId>

 <version>5.6.2</version>

 </dependency>

 <dependency>

 <groupId>io.rest-assured</groupId>

 <artifactId>rest-assured</artifactId>

 <version>4.5.0</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.8.1</version>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 <plugin>

 <artifactId>maven-surefire-plugin</artifactId>

 <version>2.22.2</version>

 </plugin>

 </plugins>

 </build>

</project>

Chapter 4 tools, Frameworks, and libraries

66

Highlighted is the RestAssured dependency.

Create a test class as ContactManagementTest.java.

Define the variable as follows. This is the application URL under test.

private final String app = "http://localhost:8080/app";

To get the authorization token, add the following method in the

test class:

private String getJwtToken() {

 String admin = "src/test/resources/admin.json";

 String url = app + "/auth/authenticate";

 return

 given()

 .body(new File(admin))

 .contentType("application/json")

 .when()

 .post(url).getHeader("Authorization");

}

admin variable is the authentication payload.

post(url).getHeader("Authorization"); http POST method reads

the token from the response and returns to the caller

Let’s add test methods for Create, Find, Update, and Delete.

Add the following code snippet for Create Contact:

@Test

@DisplayName("Create Contact")

public void tesAddContact() {

 String addContact = "src/test/resources/contact.json";

 String url = app + "/api/v1/contacts";

 given()

Chapter 4 tools, Frameworks, and libraries

67

 .body(new File(addContact))

 .header("Authorization", "Bearer " + getJwtToken())

 .contentType("application/json")

 .when()

 .post(url)

 .then()

 .statusCode(201);

}

addContact is the request payload with details of the contact that you

need to create:

String url = app + "/api/v1/contacts"; this is the endpoint for

creating contact

post(url) this is the http POST method

then().statusCode(201); does the assertion on the response

status code

Add the following code snippet for Update Contact:

@Test

@DisplayName("Update Contact")

public void tesUpdateContact() {

 String updateContact = "src/test/resources/

updateContact.json";

 String url = app + "/api/v1/contacts/{id}";

 HashMap<String, Integer> query = new HashMap<>();

 query.put("id", 1001);

 given()

 .body(new File(updateContact))

 .header("Authorization", "Bearer " + getJwtToken())

 .contentType("application/json")

Chapter 4 tools, Frameworks, and libraries

68

 .when()

 .put(url, query)

 .then()

 .statusCode(200);

updateContact is the request payload with the details of the contact

that you need to update:

String url = app + "/api/v1/contacts/{id}"; this is the

endpoint for updating contact

query.put("id", 1001); this will be used for passing the query

parameter

put(url, query) this is the http PUT method

then().statusCode(200); does the assertion on the response

status code

Add the following code snippet for Find Contact:

@Test

@DisplayName("Find Contact")

public void tesFindContact() {

 String url = app + "/api/v1/contacts/{id}";

 HashMap<String, Integer> query = new HashMap<>();

 query.put("id",1002);

 given()

 .header("Authorization", "Bearer " + getJwtToken())

 .contentType("application/json")

 .when()

 .get(url, query)

 .then()

 .statusCode(200);

}

Chapter 4 tools, Frameworks, and libraries

69

String url = app + "/api/v1/contacts/{id}"; this is the

endpoint for find the contact

query.put("id",1002); this will be used for passing the query

parameter

get(url, query) this is the http GET method

then().statusCode(200); does the assertion on the response

status code

Add the following code snippet for Find Contact:

@Test

@DisplayName("Delete Contact")

public void tesDeleteContact() {

 String url = app + "/api/v1/contacts/{id}";

 HashMap<String, Integer> query = new HashMap<>();

 query.put("id", 1003);

 given()

 .header("Authorization", "Bearer " + getJwtToken())

 .contentType("application/json")

 .when()

 .delete(url, query)

 .then()

 .statusCode(204);

}

String url = app + "/api/v1/contacts/{id}"; this will be used

for passing the query parameter

query.put("id", 1003); this will be used for passing the query

parameter

Chapter 4 tools, Frameworks, and libraries

70

delete(url, query) this is the http DELETE method

then().statusCode(204); does the assertion on the response

status code

Let’s execute the test. Enter the following command in the

terminal window:

$ mvn clean test

Test execution results will be as shown below.

[INFO] Scanning for projects...

.

[INFO] Building Contact Management API Test 1.0-SNAPSHOT

.

[INFO] T E S T S

[INFO] com.contact.mgmt.api.tests.ContactManagementTest

[INFO] Tests run: 4, Failures: 0, Errors: 0, Skipped: 0, Time

elapsed: 3.849 s - in com.contact.mgmt.api.tests.

ContactManagementTest

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 4, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 7.547 s

[INFO] Finished at: 2022-04-03T14:37:58+05:30

[INFO] Final Memory: 18M/211M

[INFO] --

Chapter 4 tools, Frameworks, and libraries

71

You can see that all the tests passed.

This is the simplest way to write RestAssured-based API tests. In

Chapter 9 and 10, you will develop a test framework from scratch and will

write atomic tests built upon the RestAssured framework.

The RestAssured project is located at https://github.com/apress/

learn-api-testing.

 Frameworks/Libraries
A standard test script has a test method and a logger for the steps and

errors. The output is stored in some data structure for assertions at the

end of the script. Also, the test script is configurable to run on any test

environment. This section is just to get an overview of these frameworks/

libraries. In later chapters, when you develop a framework, you will explore

these frameworks/libraries more.

If you are not aware of these frameworks/libraries, please go through

the respective docs on the usage.

 TestNG
Writing test automation requires a framework, which helps in formalizing

the test script. TestNG is a framework that is used quite widely in the

software testing community.

JUnit is the unit testing framework that is quite popular among Java

developers for unit testing. TestNG has adapted the JUnit style of writing

tests and has very good support in the open source community.

TestNG has its own advantages, like creating a test suite using XML-

based document, annotations, parallel test execution, data providers, and

a few more features that make it a good choice as a test framework.

Chapter 4 tools, Frameworks, and libraries

10.1007/978-1-4842-8142-0_9
10.1007/978-1-4842-8142-0_10
https://github.com/apress/learn-api-testing
https://github.com/apress/learn-api-testing

72

You will be using TestNG to write API tests. You will go over a few

features in upcoming chapters when you start writing test scripts.

You can learn more about TestNG at https://testng.org/doc/ .

 Log4j
Test scripts need logging, just like the software source code. Log4j is

a popular library for logging steps as well as exceptions during test

execution. It is a good way to debug tests. You will be using this library in

the test framework.

Log4j is an XML document in which you define how the test script logs

the text based on the context and log level like INFO, WARN, or ERROR.

Due to recent log4j vulnerability, please go through the log4j doc4 to

find the suitable version to use in the test framework.

 Jackson-Databind5

The API returns JSON, and as a tester you need to parse the response for

assertions. One of the best JSON-to-Java libraries is Jackson-Databind. You

will be using this in the test framework to store the API response for ease of

use and better readability. Needless to say, assertj does a pretty good job in

asserting Java objects.

 HashMap
A few APIs require parameters in the URL. With the help of HashMap, you

can parameterize the API. HashMap6 is a Java collection that you will be

using in the test framework.

4 https://logging.apache.org/log4j/2.x/
5 https://github.com/FasterXML/jackson-databind
6 https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

Chapter 4 tools, Frameworks, and libraries

https://testng.org/doc/
https://logging.apache.org/log4j/2.x/
https://github.com/FasterXML/jackson-databind
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

73

 Assertj
Every test needs assertions. Although test assertions are provided by

TestNG, assertj is the most convenient because of its easy-to-use methods

plus a variety of assertions support, which includes Java collections.

Next, you will be learning what to use from assertj. Meanwhile, you

should go through the documentation at https://assertj.github.

io/doc/.

 Java Spring
Java Spring has one of the best frameworks. It’s removed a lot of boilerplate

code and has packages at your disposal for configuring out how tests can

be executed.

You will be using the Java Spring @Configuration, @PropertySource,

and @ComponentScan annotations and Spring Bean to configure API tests as

well as test environments. You will see the usage in the later chapters.

 Summary
In this chapter, you learned about standard tools for testing APIs of

software applications. Also, you went through useful frameworks and

libraries, which you will be using in the upcoming chapters. In the next

chapter, you will learn about the test pyramid.

Chapter 4 tools, Frameworks, and libraries

https://assertj.github.io/doc/
https://assertj.github.io/doc/

75

CHAPTER 5

Test Pyramid
In the previous chapter, you learned about the tools, frameworks, and

libraries used for automation testing. This chapter introduces the test

pyramid and why it’s crucial to visualize tests on each layer of a software

application.

At the end of this chapter, you should have a good idea about the

importance of a layered testing approach and how it helps save time

and effort.

Mike Cohn1 created a test pyramid2 that offers a practical way of testing

software applications. This was before the agile methodology came into

existence. Later, Martin Fowler3 mentioned the test pyramid in terms of

agile testing in his blog about the test pyramid4.

For a software development team, it is important to understand

the necessity of testing for customer success. For a typical software

application, we can define testing efforts using a test pyramid. The test

pyramid also helps in identifying the layer where testing is needed the

most. It helps save time and effort. This concept is time-tested; it’s a

practical approach towards testing. Software should fail early and fail fast.

If this is not the case, then either the code is not buggy or we need to write

more tests to break it.

1 https://en.wikipedia.org/wiki/Mike_Cohn
2 www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-
automation-pyramid
3 https://en.wikipedia.org/wiki/Martin_Fowler_(software_engineer)
4 https://martinfowler.com/bliki/TestPyramid.html

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_5

https://en.wikipedia.org/wiki/Mike_Cohn
http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://en.wikipedia.org/wiki/Martin_Fowler_(software_engineer)
https://martinfowler.com/bliki/TestPyramid.html
https://doi.org/10.1007/978-1-4842-8142-0_5#DOI

76

In a typical software development team, developers test their own code

and then a code review meeting is set up where the architect or the lead is

assigned to review the code. Once the code is ready for testing, the testers

start testing the software application.

Before getting into the test pyramid, let’s go through what happens

on a regular day-to-day software development team. Developers deliver

the code with the unit test coverage. A CI/CD pipeline is set up where all

the unit tests are executed before the testers start testing the functionality.

Front-end testers write the functional test plan and test the GUI. Back-

end testers write the middle tier test plan, which cover the business

components and communication between them, which are basically the

services.

The above testing activities can be categorized into black box, gray box,

and white box testing.

 Black Box Testing
Testers who test an application like an end user, without knowing any

internal details about the software, are termed black box testers and their

activity is termed black box testing.

These testers follow the functional requirements given by the end user,

and the goal is to check whether all the given functional requirements

are working as expected. They enter the input and expect the output to

be bound to some condition(s) without knowing how the application

internally processes the request and sends the response.

This type of testing is usually performed at the GUI level.

Testing each of the workflows is time-consuming and usually takes

weeks if not days. Testers may write automated test scripts to save time and

resources.

Chapter 5 test pyramid

77

Do not confuse this with UAT testing or beta testing. Black box testing

is performed by testers or those who are supposed to use the product. This

is usually done before the production release.

 Grey Box Testing
Testers who are aware of the customer requirements as well as the internal

working of the software application perform what is called grey box testing.

This usually involves testing the internal communication between the

components as well as confirming whether unknown conditions are

handled well by the system. An example of an unknown condition is when

a user enters an invalid input or a data type that is not compatible, the

application should throw the correct exception/error message. It is crucial

to test all component interactions and services thoroughly because any

miss may result in software malfunction.

 White Box Testing
White box testing covers code paths, checks complexity of the code, and

so on. In short, white box testing checks whether the developer uses the

right algorithm or not. Unit testing is a subset of white box testing where

the developer knows the technical details of the system as well as the

functional requirements of the software application.

In the competitive market, software development has evolved and

so has software testing. Software testing is not just finding bugs, but also

finding bugs as early as possible and hitting the layer where there is more

possibility of bugs. At the same time, we need to save time and money.

This is where the test pyramid helps in finding the balance in testing.

Chapter 5 test pyramid

78

 Test Pyramid
If you have already set up and are running test automation, draw the

triangle. If the triangle matches what is shown in Figure 5-1, then you are

already following the test pyramid. But if the number of GUI tests are more

than the unit tests or API tests, then it is quite certain that testing time

is longer, the tests are often flaky, and the testers’ time goes into finding

script issues vs. bugs.

Figure 5-1. The test pyramid

There are various GUI test automation tools that can be used for

test automation. If you have already experienced GUI automation, then

probably you have also seen that GUI automation tests take a lot more

time to write and the test execution cycles are longer. Usually the ratio is

1:5 (varies depending upon complexity of the software application). That

is, the time to write a single GUI test is equal to time to write five API tests.

Also, the execution of services tests is much faster (provided the API is

performance-tuned).

Chapter 5 test pyramid

79

The test pyramid says that testers should invest more time in testing

the middle layer than the GUI layer. We will skip the unit testing part for

now since this book is more about learning API tests.

The tester’s objective is to find more bugs in less time. Based on

experience, GUI testing takes more time in test development and

execution compared to API testing. We can test all permutations and

combinations of the business logic at the API layer. GUI testing is end-

to- end testing and does not involve how the internal components work

together.

The cost of finding a bug at the API layer is much lower and the effort

in finding the bug is less compared to GUI layer testing. Computation and

data testing must be taken care of at the services layer; it’s difficult and

time-consuming to do so on the GUI layer.

The rule of thumb is do not repeat the test if it is already covered in the

layer below.

Non-functional testing, like performance, security, and such, should

be done on the services layer. On the GUI layer, tests should be limited to

front-end security testing.

 Summary
In this chapter, you went through the test categories and learned about

the test pyramid. You also learned that testing at the top layer should be

minimal and the bottom layer should have the maximum number of tests.

Also, you now know that repeating a test is not a good idea. In the next

chapter, you will learn about what needs to be tested at the API layer.

Chapter 5 test pyramid

81

CHAPTER 6

Testing the API
In earlier chapters, you learned why we need API testing and the

advantages of doing so. You also learned about web application

architecture, the HTTP protocol, and various authentication techniques.

This chapter will walk you through the aspects of API testing—the API

testing paradigm.

At the end of this chapter, you should have a good knowledge about

what things must be tested on a given API. You will also know some

keywords that are commonly used in the industry.

A typical API requires the HTTP protocol and has a payload, a request,

and response as well as a request header and response header. You have

learned various aspects of web application architecture, HTTP protocol,

and authentication for requesting a resource. Let’s dive into specifics and

find out what you need to test as a part of API testing.

Note that since we all now do iterative development, testing is a part

of the development team (not like the waterfall model). Testing should

be faster and able to find bugs, as you learned in the last chapter on the

test pyramid. If you define test standards, or a set of rules, or a checklist

on the hows and whats of API testing, it will be much easier to write test

automation, find more bugs, and then improvise. With this in mind, let’s

continue our discussion on the API testing paradigm.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_6

https://doi.org/10.1007/978-1-4842-8142-0_6#DOI

82

 Workflows/Use Cases/Test Script
The product owner provides workflows and use cases to the development

team. The workflow defines what the system is supposed to do. The use

case is the interaction of a user with the system.

Typical workflow examples are taking orders, making payments,

shipping orders, and so on.

A use case is the steps a user performs while placing the order. It may

involve touching most of the workflows or maybe just one.

Testers review the workflows and use cases. Before starting test

automation, they write test scripts in the format agreed upon by the team

(in most of the cases, it is a spreadsheet). The agreed-upon format helps

the team in the review process.

Writing elaborated test scripts is useful for writing test automation.

For API testing, you need to add details like input data, datatype, and

the format of the request. You also need to add expected results in the test

script, like what data is expected, in what format, the response format, and

such. This is crucial for the UI developer because they use the API to show

data on the UI based on the user request.

The API has a request/response schema (XML or JSON), which in turn

has a request parameter and response values. You need to test the schema,

data, and the data type. You also need other factors, which we will discuss

in the sections below.

 Schema Validation
As a part of schema testing, you must make sure that the schema is

correct and based on the requirements. API details are usually part of

the documentation. It gives all the details about the request/response

body and the data types. We will discuss the API documentation in later

chapters.

Chapter 6 testing the api

83

A JSON schema can be created with the help of online tools or

manually based on experience. You can choose the manner as per your

need; however, a two good options are https://jsonschema.net/ and

https://jsonformatter.org/json-to-jsonschema .

A sample schema of a contact management application generated by

https://jsonformatter.org/json-to-jsonschema is as follows:

{

 "$schema": "http://json-schema.org/draft-06/schema#",

 "type": "array",

 "items": {

 "$ref": "#/definitions/contactManagement"

 },

 "definitions": {

 "contactManagement": {

 "type": "object",

 "additionalProperties": false,

 "properties": {

 "id": {

 "type": "integer"

 },

 "firstName": {

 "type": "string"

 },

 "lastName": {

 "type": "string"

 },

 "email": {

 "type": "string"

 }

 },

 "required": [

Chapter 6 testing the api

https://jsonschema.net/
https://jsonformatter.org/json-to-jsonschema
https://jsonformatter.org/json-to-jsonschema

84

 "email",

 "firstName",

 "id",

 "lastName"

],

 "title": "contactManagement"

 }

 }

};

Schema validation consists of the following:

• The data type matches with the requirements.

• The required/mandatory parameters are present.

• The type of schema is correct (JSON Object or

JSON Array).

With the help of Postman, you can test the JSON schema. Let’s see the

Postman code snippet in the Tests submenu:

var jsonResponse = pm.response.json();

var salesAppSchema = <this will be the schema, same as given in

above sample schema>

pm.test('schema is valid', function() {

 pm.expect(tv4.validate(jsonResponse,salesAppSchema)).

to.be.true;

});

Hit the request and the test will validate the schema. Figure 6-1 shows

that the schema test is a PASS.

Chapter 6 testing the api

85

Figure 6-1. JSON schema validation

Postman scripts can be downloaded from https://github.com/Apress/

Learn-API-Testing.

 Test Coverage
API test coverage is said to be good if it covers all functional aspects of the

software application, the technical aspects of the API, versioning, error

logging, request and response headers, request and response parameters,

the data including invalid data and data injection (and few other aspects of

security testing), and finally the performance. It’s good to have the testing

API documented if the APIs are exposed to the external world.

Chapter 6 testing the api

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing

86

 Header Testing
Header testing is an important part of API testing since it has the metadata

information, authorization token, the content type information, the expiry

of the token, and many more aspects that are crucial for the API to work

efficiently.

 Request Header
Request headers play a major role in making sure that API works as per the

technical and functional aspects.

Request headers can be exploited by a hacker, so it is very important

from the security testing perspective. Since we are talking about functional

testing, we will discuss a few important things about the request

headers. Feel free to explore more ways based on the domain or software

application you are testing.

 Correct Header

First thing first, you need to make sure that passing correct headers

does work.

 Missing Header

Do not pass the required headers and check the API response. The

response should be 4XX, a malformed request. For example, do not

pass the content-type, authorization header, required media type, or

compression format.

Chapter 6 testing the api

87

 Incorrect Header

Pass incorrect headers (like, for a JSON payload, pass text-html) and

check the API response. The response should indicated that the header is

not correct.

Use a malformed/expired authorization token to gain access to the API

resource. The response should tell the user that the token is malformed.

For an OAuth2 token, check whitelisted redirects.

 Unsupported Type

For a media application, you can pass unsupported media types and

check if they are understood by the API. The response should show an

appropriate error message.

 Response Header
Response headers are crucial for the success of the API. The following

sections cover a few examples.

 Supported Type

The content-type in the response header should be based on the schema

used for API development.

If it’s a media application, the supported media type should be given in

the response.

 Response Codes

For a successful response, the response code should be 200. For an

authorization call from the authentication server, the response code

should be 301. Find similar examples for the application under test and

add a few tests around the response code. This becomes more crucial

Chapter 6 testing the api

88

when the APIs are exposed to the external world; as such, a small mistake

may lead to loss of business.

 Request Body
Testing the request body has a lot of scope if everything is set up correctly,

such as the metadata in the headers. But if the request body is not correct

and is missed in testing, it directly impacts the functionality of the

application. Let’s check what can be tested as a part of the request body.

 Format Unsupported
Send a text format as a payload and check the response. Only supported

formats should be allowed by the API.

 Special Characters
Send special characters in the payload in place of the string data type and

check the API response. Some foreign languages have special characters

that should be supported in case the API supports all locales.

 Very Long Strings
For a name or any other string, pass in a very long string in the payload and

check the API response. The API should not allow a string that is greater

than the column size in the database.

Chapter 6 testing the api

89

 Invalid Method
Use POST instead of PUT and check if the API responds to the request.

The API should throw an error if the endpoint does not have the required

access method, which is given in the API documentation,

 Invalid Value
For integers values, pass in decimal values. For Boolean values, pass in a

string like “true” (in quotes). You can be more creative in finding issues

since all these values will end up in the database at the end of the day

if the operation is adding the values to the database, such as contact

information.

 Incorrect Data Type
Instead of integers, pass in string values and check the API response. The

API should throw an error appropriately.

 Empty Data/Object
Pass in an empty JSON object as a payload and check the response. Also,

pass in an empty string to check the API response. The API should not

allow these inputs. Empty strings will ultimately end up in the database if

the operation is adding new data.

 Required Fields
Remove the required fields from the payload and check the API response.

The API should show appropriate error messages if the required fields are

missing.

Chapter 6 testing the api

90

 Null
Send null as values in the payload and check the response. The API should

show appropriate error messages.

 Redundant Fields
Pass in redundant fields, such as fields that are not required. Also, pass

additional fields that are not in the definition of the payload and check the

response. The API should not allow additional fields. The redundant fields,

if not in the definition, should not be allowed.

 DELETE Already Deleted Entity
This is more specific to the DELETE method. Once the entry is deleted

from the database, hit the same API again and check the response. The

API should respond with a message that the entity does not exist. This is

more of an implementation detail that you need to check for the DELETE

endpoint.

 Duplicate Check
For add operation, you should check if the duplicate check is enabled on

the API endpoint or not, based on the business requirements. For example,

the email ID and the phone number should be unique for contacts.

You also need to check if the update operation is duplicating the record

in the database.

Chapter 6 testing the api

91

 Response Body
The response body is the validation of the expected data based on the

input, which is called the actual data. A response can be big in size as well,

so you need to make sure that it is handled properly by the given API.

 Actual Data vs. Expected Data
Let’s say you are requesting a list of contacts. The response would be

having the list of contacts with the fields based on the API definition.

 Limit/Size/Pagination/Sorting
You need to make sure that the API returns the data in the specified format.

There is also pagination. The size of the response should also be checked

since it directly impacts the performance of the API.

 API Version Testing
This category contains backward-compatibility tests. If the endpoint

changes, the old one should not be removed, but when the user hits the

old endpoint, it should redirect to the new endpoint.

 Internal vs. External APIs
APIs that are not accessible to the external world are called internal APIs.

As a part of the standard testing practice, you need to make sure that the

internal APIs are not accessible by the outside world. There should be an

IP whitelisting of the internal APIs, those outside the list, and the APIs that

are inaccessible.

Chapter 6 testing the api

92

APIs that are exposed to the external world ought to be consistent,

secure, and scalable based on the high usage. It is also good to monitor the

external API, find out the usage patterns, and draw up testing guidelines

accordingly. For example, if the external world is frequently fetching the

list of contacts, then you need to make sure that the performance of the

API is good enough. And if the external world is interested in deleting

something, then the copy of the data must be preserved or not, based on

the geo location laws.

The definition of the external API should never change; that is, the

tests should never fail in ideal conditions. But if they fail, it will be P0 and

must be fixed immediately. You can also pick up beta testers from the API

consumers and ask them to help with test reviews.

For external APIs, security testing should include tests for SQL

injection, remote code execution, and such.

 Consumer-Driven Contract Testing
CDCT applies to external APIs. They are often services offered by vendors

to the external world, like weather or currency conversion. The definition

of the API becomes the contract, and the consumer drives the testing

of these APIs. Consumers add the test automation and share the same

with the vendor. The vendor, in turn, runs these tests as a part of CI/CD

pipeline, and any red flag is taken seriously and must be fixed in a few

hours, if not minutes.

 Importance of Negative Testing
Negative testing is a very important part of API testing since it exposes

weaknesses in the API implementation. It is suggested to do enough

negative testing so that you get a clean user interaction and the user is

not allowed to push garbage data into the application. Negative testing

Chapter 6 testing the api

93

helps identify bugs that may crash the application. For example, in a file

upload API, if the size limit is not set, then the user may upload a large file,

which may end up crashing the application server. Another example is a

shopping cart application that is allowed to set the product cost to zero.

Negative testing is particularly significant for domains such as banking,

finance, and insurance where, if not done, the business may end up having

varied legal issues with customers. Discussion of the testing approach is

out of the scope of this book, but the tester should be diligent in finding all

scenarios that may be a threat to the business.

API testing should be done thoroughly since it impacts the overall

application, both the front end and the back end. In the event of poor API

testing, the back end will have garbage data, which is not useful. If the

response to the user input was not tested well enough, the front end will

have issues if the user makes a mistake, intentionally passes invalid values,

or enters garbage data.

 Summary
In this chapter, you learned what needs to be tested at the API layer,

including the headers, requests, and responses. You also learned about

negative testing, internal vs. external APIs, and consumer-driven contract

testing. In the next chapter, you will examine a good test script.

Chapter 6 testing the api

95

CHAPTER 7

A Good Test Script
In the earlier chapters, you developed an understanding of API testing,

web application architecture, token-based authentication, tools,

frameworks, libraries, and the test pyramid. In the previous chapter, you

learned what to test on a given API. In this chapter, you will learn about the

components of a good test script and the guidelines for a good test script.

At the end of this chapter, you’ll know what a good test script should

contain and the guidelines for writing a good and readable test script.

These guidelines will help in code reviews and save a lot of time between

the software developer and the reviewer.

For a software developer, it is crucial to write good code so that it

can be reviewed easily, can debug faster, and any new changes can be

accommodated quickly. At the same time, it should be less complex, take

less memory, and be faster to execute.

For a software tester, the test script should be readable, execute faster, take

less memory, have similar steps as the user interactions, and be easy to review.

Before starting a test framework, it is good to define the components

of a test script and the set of guidelines that should be followed to write an

efficient test script that has all the characteristics of a good test script. This

will help in code reviews and speed up the writing of test scripts.

Let's discuss the components of a good test script and the guidelines

that you may find to be a good fit for any project. It is always better to set

the guidelines in advance to make sure that they evolve as you get closer

to completing the test automation. They can be agreed upon during team

meetings.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_7

https://doi.org/10.1007/978-1-4842-8142-0_7#DOI

96

 Components of a Test Script
Test scripts can be thought of as steps that are applied to make sure that

the product under test is as per the standard guidelines of the industry. If

the test script does not find any issues, it is assumed that the product is QA

certified and okay to be used by end users.

Before starting to test the product, you must make sure that product is

available and is configured as per the test requirements. Once you know

you have the right configuration, follow the steps to make sure that the

product under the given configuration works well. Based on the outcome,

you can decide that the product in the given configuration is good, as

per the expected outcome, and is good for user testing or not. Once

the configuration is tested, you need to reset the product to a different

configuration.

This is applied to all types of testing, from software testing to hardware

testing. Based on this, you can deduce the required components of a

test script.

setup() {

 // configure the product

}

test() {

 // test steps

 // test outcome validation

}

teardown() {

 // reset the configuration

}

Chapter 7 a Good test sCript

97

 setup()
For a software web application, setup sets up the application configuration

like the application URL, user credentials, user role, and so on.

 test()
The test step involves the use case or the workflow (for any user), and the

test outcome validation is the assertion that the tester will be doing to

make sure that the test is successful or failed.

For API testing, the test script should be the same as the actual calls.

For example, if you are creating a contact, then the test script should be

two lines max. The first is a call to an API endpoint like post(endpoint,

payload); and the next line asserts the response.

Check out the following example:

testCreateContact() {

 post(endpoint, payload);

 assertThat(actualResponse).isEqualTo(expectedResponse);

}

This is the simplest and best example of a good test script. The

framework should support boilerplate code so that the test script is very

short, meaningful, and readable.

 teardown()
The tear down step cleans up the test configuration, invalidates the

session, and more.

Don't add lines of code in tearDown() that will delete something to

clean up the database. Discuss better options with the team because the

test script is meant for testing stuff, not for cleaning up databases.

Chapter 7 a Good test sCript

98

For a good test script, the components should not be more than what is

absolutely required. It has to be simple with a minimal number of lines of

code. Making it complex increases the debugging time and it is difficult to

maintain.

 Guidelines
Having a set of guidelines is good for maintaining the standard of test

automation, and at the same time it gives you an opportunity to improvise.

The following sections offer guidelines for writing good test automation

scripts. These guidelines are standard and can be applied to UI testing (a

UI test script should have an additional set of guidelines since it deals with

browser DOM elements), API testing, or any other testing layer you may

want to apply.

 Single-Attempt Test
Avoid writing and pushing (pushing to code repository) a test multiple

times. It should be pushed to the repository only when it is self-reviewed

based on the guidelines and coding standards. (We will discuss coding

guidelines in the next chapter.)

This improves your confidence and habit of writing code in a single

attempt. It also helps code reviews.

 Document Test Objective
Use the TestNG @Test annotation with the description tag (or any other

tool if it supports the documentation, or it can be under comments as

well). The test description should be as small as possible and convey the

meaning of the test.

Chapter 7 a Good test sCript

99

Look at the following line of code:

@Test (description = "Verify adding a contact is successful.")

 Keep It Small
A test script should be written for a single objective. It should be named

accordingly.

Do not mix different types of assertions in a single test. Otherwise, if

one of the assertions fails, it will be assumed that the test failed, even if

all the remaining assertions pass. Having a single assertion, on the other

hand, isolates the issues and thus helps find issues faster.

Test only one part of the API at a time, or one functionality at a time, if

the API has few additional things to do (ideally, this will not be a case with

microservices). For example, check the headers in a different test, and the

response in another; test schema in one test and the body in another test.

 Use assertj for Assertions
You learned about assertj in Chapter 4. You should use the industry’s best

assertion library because it covers a wide range of responses.

assertj is one of the best libraries for assertions in Java-based test

frameworks. It has fluent assertion support that increases readability.

Consider the following example:

LinkedList<String> expectedContactColumnName

 = new LinkedList<>(

 Arrays.asList(

 "FIRST NAME",

 "SECOND NAME",

 "EMAIL",

 "CONTACT NUMBER"

Chapter 7 a Good test sCript

https://doi.org/10.1007/978-1-4842-8142-0_4

100

)

);

assertThat(contact.getContactColumnName()).isEqualTo(expected

ContactColumnName);

Note do not mix assertion libraries like testNG and JUnit. Use only
assertj.

 Use log4j
You learned about log4j in Chapter 4. You can use log4j for better logging

practices. Let's say you need to create a report of what tests were executed,

the steps, and that the test failures were logged appropriately, which in

turn conveys the failure messages.

Consider the following example:

log.info("Test [{}] \n Steps: \n [{}]", description, steps);

Note do not use System.out.println()because it slows down
the overall test execution.

 Order of Tests
You should not have the order of tests defined in the test script or test

framework. If the first test fails, the dependent tests are skipped or

assumed to be failed since the precondition does not meet expectations.

Chapter 7 a Good test sCript

https://doi.org/10.1007/978-1-4842-8142-0_4

101

The objective of testing is to find the bug in the software application as

early as possible, which is not possible if you make the process complex in

order to shorten the test script efforts.

It is always better to have a single test per test class. Avoid a test

framework like the following:

public class ContactCRUDTest {

 public void createContactTest () {

 // create contact

 assertThat(response).equals(200);

 }

 public void updateContactTest () {

 // update the above contact

 assertThat(response).equals(200);

 }

}

This is a CRUD test class in which you are creating a contact first and

then updating the same. This means that if the create contact fails, the

update contact is skipped. You don't want this since it is just that create

contact is not working, but the update contact might be working.

 No Interventions Between Test Steps
It is a common practice to connect with the database and make assertions.

You should avoid doing multiple things in the test script.

A test script is a set of user steps. The user inputs something and

expects something out of it. The user does not connect with the database

or any other third-party system. It is the job of the API to do all these

things, or some background process that runs based on the API call and

provides results to the API.

Chapter 7 a Good test sCript

102

It is good to avoid the highlighted code:

public class ContactListTest {

 public void contactListTest () {

 login();

 // some steps here

 assertThat(actualResult).equals(expectedResult);

 connect.db().getValues();

 assertThat(value1).equals.equals(value2);

 connect.shell().retrieveValues();

 logout();

 }

}

Do not connect with the database between the test, or any other system like

the shell, as this is not efficient testing. Connecting to the database and retrieving

results after the API call will drain down the total execution time; if the database

password changes, your test will fail. The same goes with connecting to shells.

 Avoid Hard Sleeps
Sometimes the API response is too slow during the development cycle and

the developer is engaged in fixing the API response time. During this time,

it is tempting to add the delay in the test script before the assertion. You

should not do this at any cost. First, because you would not know whether

the response time is fixed or not and you may forget to remove the sleep

time. Second, it impacts the overall test execution time.

Avoid Thread.sleep();

 Always Use Assertions
Recall components of tests from the above sections of this chapter. Test

script should have at least one assertion. Without an assertion, a test is not

really a test but a set of steps that get executed without any objective.

Chapter 7 a Good test sCript

103

Testing is all about finding a bug. Without an assertion, there is no

meaning to testing.

 Do Not Overtest
Always write tests that have a possibility of finding the bug. Test the happy

path first and then do negative testing. Think about the user before writing

any test scripts. Extra tests will result in more time to execute the tests and

also take time and resources for test maintenance.

 Do Not Import a Test into Another Test
There is a possibility of similar code in almost all tests. For example,

assertions are similar in a couple of tests. Assertions are a part of a test

script. It may be that the same assertions are being used for other tests.

Assertions are an integral part of the test script. Always have individual

assertions for each test; if not, you’ll need to debug the issue if the test fails.

Also, you will end up in code manipulation and writing various if-then

conditions. So, it is best to have individual test assertions.

Do not write helper functions in the test class, such as getting the current

time in milliseconds, or the same set of assertions that are being used in other

test classes. Always use the standard helper class and import it in your base test.

It may seem convenient to call one test method in another test, but you

should avoid doing this. The test class is meant to have test methods run as

a part of the test execution.

 Test Boundaries
It is important to understand the test boundaries. Discuss them within

the team and find out what you should not test. Without finalizing the test

boundaries, you will end up writing tests that may not be required or have

no impact. This will increase overall test execution time.

Chapter 7 a Good test sCript

104

Testers should be good in utilizing CPU time and the memory

footprint.

 API Test Coverage
Make sure that the API test coverage includes user roles and permissions. You

are testing external APIs as per guidelines/contract. Always check data types

and values like string vs. integer, null vs. zero, or empty values in the response.

Test individual APIs. Also form an end-to-end test and combine several

APIs. If similar data is present as a response in several other APIs, compare the

data in the given APIs. There is a high chance that you will find a regression.

 Provide Short Commands
Utilize the power of Maven and configure test suites in pom.xml. Provide

team members short commands for executing tests. Use Maven Profiles to

create the test suite. It’s like writing a CLI (command line) application.

<profile>

 <!-- end to end test suite -->

 <id>e2e</id>

Do not try{} catch{}
Do not catch AssertErrors or any other exception inside the test script.

It may be the case that you are missing the actual behavior of the API.

 Summary
In this chapter, you learned the components of a good test script as well as

the guidelines to follow while writing a good test script. In the next chapter,

you will learn about coding guidelines.

Chapter 7 a Good test sCript

105

CHAPTER 8

Coding Guidelines
To continue the previous chapter, in this chapter you will get to know

coding guidelines to follow in order to write a good and readable test

script, as well as a few coding best practices for the test framework.

This chapter will make you aware of the things that are widely missed

and never perceived later in the project life cycle, but if used will make

test automation much better and joyful. This chapter is influenced by

various learnings during office hours by looking at each other's code and

finding flaws.

At the end of this chapter, you should know how to write good code

that is readable. When implementing best practices at the workplace, these

guidelines will help in code reviews and save a lot of time between the test

development engineer and the reviewer.

Coding best practices and guidelines can also be agreed upon in a

team meeting. The information in the following sections will be a good fit

for any project.

Coding best practices apply to test classes as well as supporting code,

which enables the test to be clean and readable.

 Coding Best Practices
A test framework evolves with each development project. Some

organizations have developed their own standard test framework,

which must be used by all development teams. Other teams develop the

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_8

https://doi.org/10.1007/978-1-4842-8142-0_8#DOI

106

framework as per the needs of the development project. Each approach

has advantages and disadvantages.

Developing a framework for the organization has its own challenges,

whereas developing a custom framework for a team is easier to manage.

For a custom framework, changes can be made easily when few teams

depend on the base classes. With a standard framework, making any

changes in the base class requires approvals from all teams, and if anything

breaks, then a delay in release is inevitable.

While you consider using a standard test framework or a custom

framework for a specific team/project, it is really important to follow

coding best practices so that anyone inside or outside the team has no

problem using the base classes.

Every organization has standard coding practices for projects. The

code review committee makes you follow the guidelines. But it's the duty

of the software engineer to write better code. Apart from standard coding

best practices, there are few more things that need to be considered if you

are developing an API testing framework.

Let's discuss a few of the coding best practices for an API testing

framework. They may apply to a UI testing framework as well as any other

testing framework.

 Class Naming Conventions
A class name should always be singular. The name depicts the object in

accordance with OOP principles. For example, if you are storing a contact,

the name of the class should be Contact but not Contacts. The class name

should convey the exact purpose based on the requirements.

 Method Naming Conventions
Follow the camelCase rule. Keep it simple and straightforward. For

HTTP methods, name them as get(), post(), put(), delete(), and

Chapter 8 Coding guidelines

107

so on. They will be called from the test script. The objective is to make

sure that the test script follows exactly how the user interacts with the

application. Utility methods start with an action, like sortAscending()

and sortDescending(). Method names should not be plural unless the

return type is a list or an array.

 Variable Naming Conventions
Follow the camelCase rule. Name the variable exactly what it means. For

example, if the variable is a list, name it as responseHeaders (note that

name is plural). For single-value variables, you can use responseBody,

responseContactType, responseStatusCode, jwtToken, and so on.

 Constant Naming Conventions
Use all uppercase letters for constants. This indicates a differentiator from

other variables.

 Provide User Actions
Provide actual methods for actions, like login(); logout(), and

authorize(); this will help in the readability of the test script.

Use getters and setters with the appropriate prefix: getResponse();

getJwtToken(); getJSON(); getTimeInMilliSeconds();

getCurrentDate(); setTestConfig(); and setJwtToken();.

 Simplicity
Do not complicate a class or a method. It is good to have a single

responsibility class or method. You can write many more methods that

return only one thing. Organize them in such a way that refactoring will

be easy.

Chapter 8 Coding guidelines

108

 Indentation
Indentation improves code readability. Use autoformatting of the code

after the build, or before pushing it to the code repository. Use the

following Maven plugin:

<plugin>

 <groupId>com.coveo</groupId>

 <artifactId>fmt-maven-plugin</artifactId>

 <version>2.5.1</version>

 <executions>

 <execution>

 <goals>

 <goal>format</goal>

 </goals>

 </execution>

 </executions>

</plugin>

In addition to above, I have a few more guidelines for test assertions

and naming conventions for test scripts. Let's discuss them in the following

sections.

 Test Assertions
The best place for assertions is at the end of the test script.

Do not have any assertion helper methods in the test framework/

helper classes/utilities. Let the third-party assertion libraries (assertj) or

the unit testing framework (JUnit, TestNG, etc.) do their work.

Chapter 8 Coding guidelines

109

 Test Class Naming Conventions
Prefix each test class based on the use case. For example, if you are testing

CRUD operations, name them per the conventions in Table 8-1.

Table 8-1. Test Class Naming Conventions

Bad Good Comments

ContactTests,

ContactOperationsTest,

ContactCreateRead

UpdateDeleteTest

CreateContactTest,

ReadContactTest,

UpdateContactTest,

DeleteContactTest

the test name should

be based on the user

actions and should

not be long, should

not be technical, and

should not sound

like a unit test. it’s

better to have a

single responsibility

test class rather than

doing multiple tests in

a single class.

It is best to define rules and discuss them with the team/architect so

that a better foundation can be laid out for upcoming or ongoing testing

projects.

 Test Method Naming Conventions
Prefix each test method based on the test summary of the test. For

example, if you are testing create contact, it's best to name as per

Table 8-2.

Chapter 8 Coding guidelines

110

Ta
bl

e
8-

2.
 T

es
t M

et
ho

d
N

am
in

g
C

on
ve

n
ti

on
s

Ba
d

Go
od

Co
m

m
en

ts

te
st
Re
sp
on
es
Of
Cr
ea
te

Co
nt
ac
t(
);

te
st
Ad
dC
on
ta
ct
()
;

th
e

te
st

 n
am

e
sh

ou
ld

 b
e

ba
se

d
on

 th
e

us
er

 a
ct

io
ns

 a
nd

sh
ou

ld
 n

ot
 b

e
lo

ng
, s

ho
ul

d
no

t b
e

te
ch

ni
ca

l,
an

d
sh

ou
ld

 n
ot

so
un

d
lik

e
a

un
it

te
st

.

te
st
Ad
dA

nd
Up
da
te

Co
nt
ac
t(

);

te
st
Ad
dC
on
ta
ct
()
;

te
st

 o
ne

 u
se

 c
as

e
at

 a
 ti

m
e.

te
st
_a
dd
_c
on
ta
ct
()
;

te
st
Ad
dC
on
ta
ct
()
;

do
 n

ot
 u

se
 u

nd
er

sc
or

es
; g

o
w

ith
 c

am
el

Ca
se

 o
r p

er
 th

e

co
di

ng
 g

ui
de

lin
es

 o
f y

ou
r t

ea
m

/o
rg

an
iz

at
io

n.

te
st
Nu
ll

Va
lu
es
Cr
ea
te

Co
nt
ac
t(

);

te
st
Ad
dC
on
ta
ct
Fi
rs
t

Na
me
Nu
ll
Va
lu
e(
);

su
ffi

x
th

e
te

st
 w

ith
 th

e
ac

tu
al

 v
al

ue
; t

hi
s

w
ill

 h
el

p
in

 d
ire

ct
ly

un
de

rs
ta

nd
in

g
th

e
is

su
e

if
th

e
te

st
 fa

ils
. a

ls
o,

 m
ak

e
su

re
 th

at

yo
u

ar
e

ha
nd

lin
g

th
e

ex
ce

pt
io

n
pr

op
er

ly.

te
st
In
va

li
dH
ea
de
r

Cr
ea
te
Co

nt
ac
t(
);

te
st
Ad
dC
on
ta
ct

In
va
li
dA
ut
hT
ok
en
()
;

na
m

in
g

th
e

te
st

 m
et

ho
d

as
 p

er
 th

e
te

st
 s

um
m

ar
y

w
ill

 h
el

p

fin
d

th
e

te
st

/r
eq

ui
re

m
en

t f
ai

lu
re

 e
as

ily
 w

ith
ou

t a
ny

 e
ffo

rt.

Chapter 8 Coding guidelines

111

Test method naming conventions are very important since you are

working in scrum; you need to find the bugs as early as possible. It is

very important that the failures should be interpreted quickly rather than

making a guess about what is failing in the test script.

 Test Package Naming Conventions
Maven projects, or any other project, must have a package structure or a

folder structure; the package or folder name ends with tests or tests.

impl (if you are implementing a base test or main test). It's best to name

them as per Table 8-3.

Chapter 8 Coding guidelines

112

Ta
bl

e
8-

3.
 T

es
t P

ac
ka

ge
 N

am
in

g
C

on
ve

n
ti

on
s

Ba
d

Go
od

Co
m

m
en

ts

co
m.
co
nt

ac
t.
mg
mt
.

te
st
s.
cr

ud
.t
es
ts

co
m.
co
nt
ac
t.
mg
mt
.

ap
i.
te
st
s

do
 n

ot
 re

pe
at

 th
e

te
xt

 “
te

st
s”

 in
 th

e
pa

ck
ag

e
na

m
e

tw
ic

e;
 it

 s
ho

ul
d

be

th
e

en
d

of
 th

e
tre

e.

co
m.
co
nt

ac
t.
mg
mt
.

te
st
s.
cr

ud

co
m.
co
nt
ac
t.
mg
mt
.

ap
i.
te
st
s

al
w

ay
s

ha
ve

 th
e

te
xt

 “
te

st
s”

 a
s

th
e

la
st

 te
xt

 in
 th

e
pa

ck
ag

e
na

m
e

un
le

ss
 y

ou
 a

re
 im

pl
em

en
tin

g
a

ba
se

 c
la

ss
.

co
m.
co
nt

ac
t.
mg
mt
.

cr
ud
_t
es

ts

co
m.
co
nt
ac
t.
mg
mt
.

ap
i.
te
st
s

do
 n

ot
 u

se
 u

nd
er

sc
or

es
 in

 th
e

pa
ck

ag
e

na
m

e.

co
m.
co
nt

ac
t.
mg
mt
.

cr
ud
-t
es

ts

co
m.
co
nt
ac
t.
mg
mt
.

ap
i.
te
st
s

do
 n

ot
 u

se
 h

yp
he

ns
 in

 th
e

pa
ck

ag
e

na
m

e.

co
m.
co
nt

ac
t.
mg
mt
.

cr
ud
..
im

pl
.t
es
ts

co
m.
co
nt
ac
t.
mg
mt
.

ap
i.
te
st
s.
im
pl

if
te

st
s

ar
e

im
pl

em
en

tin
g

ba
se

 o
r m

ai
n

te
st

.

Chapter 8 Coding guidelines

113

It is also good to use api.tests or api.tests.impl as the suffix with

each test package. The package name should be all small characters and

it should be singular if the contents are heterogeneous and plural if the

contents are homogeneous.

We have discussed quite a bit on coding best practices and guidelines,

but do you communicate this information with the team? This is where

documentation is important. Maintain excellent documentation, which is

required by the team for quality deliverables.

 Documentation
Once framework development is done and a sample test script is working

as expected, the next step is to document how to extend the framework

with a new class/method/variable/constant/property/test data/etc.

and how to add a new test script. Document all best practices, including

everything discussed in the above sections. This will be helpful for any new

team member. This will also be useful as a guide at a later time.

Documentation tools such as Google Docs, Confluence, or a wiki can

be used. You can also use a GitHub repository, using markdown.

The document review should be done by the QA lead or the QA

Architect.

 Summary
In this chapter, you went through coding best practices as well as

guidelines and test script naming conventions to follow while writing test

scripts. You learned that for effective communication, documentation is a

good way to keep everyone updated on how things need to be done. This

also avoids ambiguities during discussions or team meetings. In the next

chapter, you will start with test framework development from scratch.

Chapter 8 Coding guidelines

115

CHAPTER 9

Organize a Test
Framework
In the previous few chapters, you learned about several concepts of API

testing including coding best practices, a good test script, and what needs

to be tested in the API. In this chapter, you will learn about components of

the test automation framework and its design aspects.

By the end of this chapter, you will know what an API test framework

should contain and you will be able to write a test framework from scratch.

Frameworks enable a software engineer to write code with fewer

lines faster and with ease. They improve the quality of the source code

and software and they enhance productivity. With a good framework,

boilerplate code can be reduced. A good framework helps in writing

clean code.

Note Automation developers spend a lot of time developing test
scripts. If the development takes a lot of time, you need to fix the test
framework.

With a test framework, your objective is to write clean test scripts that

are easier to read and are maintainable. A test script should be short and

should follow the guidelines mentioned under section “Components of

Test Script” in Chapter 7. A test framework is usable across other teams

and is extensible for new requirements.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_9

10.1007/978-1-4842-8142-0_7
https://doi.org/10.1007/978-1-4842-8142-0_9#DOI

116

You will develop the test framework for the contact management

application. Refer to Appendix B for instructions on deploying the

application.

Let’s work on the framework requirements in the following section.

 Framework Requirements
The framework should allow you to send the request to the server with

the required authentication and be able to read the response for doing

assertions. It also allows different test configuration setups. If any error

occurs, it should have the ability to throw a user-friendly exception. The

framework should also support logging. Non-mandatory requirements

include supporting static code analysis tools such as sonar.

Figure 9-1 shows the components of a typical test framework for

API testing. The components are on the left side and the corresponding

specifications are on the right side.

ChApter 9 OrgAnIze A test FrAmewOrk

117

Figure 9-1. Components of a test framework

ChApter 9 OrgAnIze A test FrAmewOrk

118

Let’s understand each of the components and how you can develop

the same for API testing.

 Request
A request is used to send requests to the server over HTTP GET, POST,

PUT, DELETE, PATCH, HEAD, OPTION CONNECT, and TRACE methods. Let’s

say you want to get the list of all active contacts. You should be able to

utilize this component to send a custom request to the server.

This is an important component so you need to make sure that the

design is easy and extensible and that the implementation is clean and

easy. You can utilize the standard design patterns in addition to the solid

design principles. Let’s say you want to add support for other HTTP

methods with custom arguments. The developer doesn’t need to rewrite

the whole component; instead, they can utilize the existing design and

extend the support for new requirements.

 Response
This is the response sent to the client by the server. Although it has several

formats, the most commonly used are JSON and XML. The framework

should be able to store the response in the given format for further

processing or for doing assertions in the test script. This component is also

important, so the design should be able to support the new requirements.

 Exception
The request and response at runtime can throw exceptions, so you need

a custom exception handling technique that gives you a friendly message

as and when an exception occurs. You just need two exception categories,

like Request Exception and Response Exception, to make it easy while

debugging.

ChApter 9 OrgAnIze A test FrAmewOrk

119

 Configuration
The test framework requires a test configuration, application endpoint,

and more. This is supported by the Spring configuration and, like the

above components, if you want to add a new configuration, it will be easier

to just add a new class and have an instance in the Base Test.

 User Authentication
Usually, user authentication is an implicit part of the request component.

However, you need to make it clear and visible so that if any modifications

are required at a later point of time, they can be done without impacting

or touching any other component. If you want to test with different

authentication types, it will be easier to add the required support.

 Processor
You need a processor to process the given request and response in a way

that is easy to comprehend. The processor is a very important component

since this is the code that is exposed to the test scripts. You need to write

the processor classes in a way that is like fluent API while writing the

test script.

For example, you may want to do it all in a single line for a given

request, as in the following line of code:

request().get(getUpdateContact(), 1001);

This is a request to the server over the HTTP GET method. The

endpoint is /contact/{contactId}.

For a request, you may do it like this:

response().getResponse().getStatusCode();

ChApter 9 OrgAnIze A test FrAmewOrk

120

This is a response from the server, and you are reading the status code

returned to the client.

 Model
With the help of the Jackson API, JSON-to-Java object mapping is easy, so

you need a model class that can store the response JSON in a Java object.

The JSON response can be easily transformed into Java POJO using

https://freecodegenerators.com/code-converters/json-to-pojo.

Just paste the response in the JSON and click the Generate button; it will

give you the required Java POJO. Add the empty and fully parameterized

constructor and added your getter and setters. If the JSON has a child

object or array, it will show you a new class. Do the same for each of the

classes.

Note that there is no preference of converter. It’s your choice. Just make

sure to add the required constructor and getters/setters.

 Test Framework
You need a XUnit test framework that supports test script development

similar to the good test script we discussed in Chapter 7 under the section

“Components of a Test Script.” It should have setup(), test() and

tearDown(). The test framework should also support running tests in

parallel, whenever required.

 Test Assertions
You need a test assertion framework that has good support for collections

or data structures and does assertions fluently. Assertj is a test assertion

API that has a good support.

ChApter 9 OrgAnIze A test FrAmewOrk

https://freecodegenerators.com/code-converters/json-to-pojo
10.1007/978-1-4842-8142-0_7

121

For example, you may want to do the assertion for the response code

given in the following line of code:

assertThat(response().getResponse().getStatusCode()).

isEqualTo(200);

 Logger
It is good to have logger support, but it’s not a mandatory requirement for

writing test scripts. Log4j is extensively used in Java projects for logging

purposes and is particularly useful while debugging.

 Util
There will be requirements for the test script to generate time in milliseconds/

seconds/minutes/hours/etc., or you may want to sort the response or do

something else that is a routine requirement of the application testing. All of

this can be a part of the test framework utility component.

 Test Execution
You may need to execute a test individually, and more often than not as a

suite, or you may want to just execute different test methods inside a test

class. Ideally, all of them are provided implicitly by the test framework. If

not, then you need to provide support for the same.

 Debug Config
Maven has support for setting up a debug configuration. If you are using

a programming language other than Java, you need support that can be

enabled as and when required.

ChApter 9 OrgAnIze A test FrAmewOrk

122

This is not a mandatory requirement, but it’s good to have. If you use

some of the standard packaging tools, this support comes implicitly.

 Test Driver
You need a Base Test class that holds common code utilized by each of the

test scripts. The base test does all the heavy lifting for the test script, which

helps in writing a clean and clear test script with fewer lines of code. The

entire test script can extend the base test and does the job of testing the use

case efficiently.

You have now gone through all the components of an API test

framework. Let’s do the implementation in the following sections. You will

start with the packaging and code management tool Maven.

 Setting Up a Maven Project
You need a Maven project for managing test projects and building,

installing, and executing test scripts/suites. Install Maven as per

Appendix A.

Create a workspace directory called learn-api-test under your home

directory and execute the following command in the terminal window:

$ mvn archetype:generate -DgroupId=com.learn.api.testing

 -DartifactId=api-test -DarchetypeArtifactId=maven-archetype-

quickstart -DarchetypeVersion=1.4 -DinteractiveMode=false

This command will create a project named api-test under the current

directory.

Let’s add dependencies in the following section. This will be helpful in

developing the components of the test framework.

ChApter 9 OrgAnIze A test FrAmewOrk

123

 Dependencies and Plugins
You are using RestAssured for API requests, the RestAssured Response for

doing assertions, and Log4j for logging-related requirements. TestNG is

the test framework that gives support for test suite/parallel test execution

etc.; Java Spring Config for test and application configuration for reading

the test properties and setting up the test environment; config. Assertj as

the fluent assertion API; and Jackson as the response object storage. You

will use these objects for storing the response and retrieving it during

test assertions. The Maven compiler plugin compiles the code in the

specific Java version. The Maven Surefire plugin is for test execution and

debugging. An optional plugin is for code formatting.

Once the Maven project is created, add the dependencies under pom.

xml as mentioned in the following sections.

 RestAssured
You will use RestAssured to test API endpoints. Use version 4.5.0.

<dependency>

 <groupId>io.rest-assured</groupId>

 <artifactId>rest-assured</artifactId>

 <version>4.5.0</version>

</dependency>

 Log4j
For logging messages, use Log4j. Use version 2.17.1 and above. Check the

security vulnerability1.

<dependency>

1 https://logging.apache.org/log4j/2.x/security.html

ChApter 9 OrgAnIze A test FrAmewOrk

https://logging.apache.org/log4j/2.x/security.html

124

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-api</artifactId>

 <version>2.17.1</version>

</dependency>

<dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-core</artifactId>

 <version>2.17.1</version>

</dependency>

 TestNG
To write test scripts, use TestNG version 7.5.

<dependency>

 <groupId>org.testng</groupId>

 <artifactId>testng</artifactId>

 <version>7.5</version>

 <scope>test</scope>

</dependency>

 Spring Framework
To test the configuration, use Spring Framework version 5.3.15.

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>5.3.15</version>

</dependency>

<dependency>

 <groupId>org.springframework</groupId>

ChApter 9 OrgAnIze A test FrAmewOrk

125

 <artifactId>spring-beans</artifactId>

 <version>5.3.15</version>

</dependency>

 Assertj
For test assertions, use Assertj 3.9.1.

<dependency>

 <groupId>org.assertj</groupId>

 <artifactId>assertj-core</artifactId>

 <version>3.22.0</version>

 <scope>test</scope>

</dependency>

 Jackson-Databind
To read the output from the response and store it in Java Bean, use

Jackson-Databind for assertions. Use version 2.13.1.

<dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>${jackson.version}</version>

</dependency>

 Maven Compiler Plugin
Use the Maven compiler plugin to compile the source code of the Maven

project. Specify the source and target the Java version based on your

project requirements.

<plugin>

 <artifactId>maven-compiler-plugin</artifactId>

ChApter 9 OrgAnIze A test FrAmewOrk

126

 <version>3.9.0</version>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

</plugin>

 Surefire Plugin
Use the Surefire plugin to execute the tests. You can specify the directory

where the report will be stored and the print summary Boolean flag.

Setting it to true will print the summary of the test execution in the

console.

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-plugin</artifactId>

 <version>2.22.0</version>

 <configuration>

 <printSummary>true</printSummary>

 <reportsDirectory>test-output</reportsDirectory>

 <debugForkedProcess>true</debugForkedProcess>

 </configuration>

</plugin>

The print summary, if set to true, will show a summary of test

execution results on the console. It’s shown here:

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

2.638 s - in com.contact.mgmt.user.GetCurrentUserTest

The test execution report will be stored in the /test-output folder.

ChApter 9 OrgAnIze A test FrAmewOrk

127

For debugging, you can enable the debugForkedProcess2. It will listen

on port 5005 and you can start the debugger in Intellij using a debug pointer.

 Java Code Formatting Plugin
The fmt-maven-plugin plugin does the formatting when you execute the

test. Do not use it if you have an internal formatting or linting tool.

<plugin>

 <groupId>com.coveo</groupId>

 <artifactId>fmt-maven-plugin</artifactId>

 <version>2.13</version>

 <executions>

 <execution>

 <goals>

 <goal>format</goal>

 </goals>

 </execution>

 </executions>

</plugin>

Take a look at the complete pom.xml located at https://github.com/

Apress/Learn-API-Testing.

2 https://maven.apache.org/surefire/maven-surefire-plugin/test-mojo.
html#debugForkedProcess

ChApter 9 OrgAnIze A test FrAmewOrk

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing
https://maven.apache.org/surefire/maven-surefire-plugin/test-mojo.html#debugForkedProcess
https://maven.apache.org/surefire/maven-surefire-plugin/test-mojo.html#debugForkedProcess

128

 Request
You need to develop code that can take the request parameters and

provide the RestAssured response object. The request package has a

scope for future extension, so you need to design this in a way that helps

extensibility and follows design principles.

Common properties in all the request methods is that they will return

the RestAssured response object. So, you can abstract this and put it in an

interface or an abstract class and use the Factory design pattern3 to your

advantage for easy object creation. This also helps in extensibility. If you

want to add a new type of request, you can add the implementation class

and the rest will be the same.

Each request has a URL and a token; a few have additional parameters

like query string or payload. This can be abstracted in an abstract class.

Now, you need to write the implementation class. Since you are using

RestAssured, this class will have RestAssured API code that returns the

RestAssured response object.

The input may be invalid for negative tests. Then, the implementation

class will throw exceptions, such as a JSONException for an invalid

payload and IllegalArgumentException for invalid query arguments. So,

you need to add the exception in the abstract class or the interface you

implemented.

You went through the RestAssured test script in Chapter 4. In the

implementation class, you use the same code. The only thing that changes

is that now it will be called by the test script rather than executed directly

as a test script.

Let’s take a quick look at the sample code snippets.

Request abstraction is done using an abstract class, which has the code

shown here:

3 https://en.wikipedia.org/wiki/Factory_method_pattern

ChApter 9 OrgAnIze A test FrAmewOrk

10.1007/978-1-4842-8142-0_4
https://en.wikipedia.org/wiki/Factory_method_pattern

129

public abstract class HttpRequest {

 private String url;

 private String token;

 private Map<String, ? extends Object> query;

 private File payload;

 // getters and setters

 public abstract Response request() throws

InvalidRequestException;

}

Next, you need to add the implementation class. Look at the code

snippet below. You use the RestAssured API.

public class GetRequestImpl extends HttpRequest {

 @Override

 public Response request() {

 Response response;

 try {

 response =

 given()

 .header("Authorization", "Bearer " + getToken())

 .contentType("application/json")

 .when()

 .get(getUrl());

 } catch (JSONException | IllegalArgumentException e) {

 log.error("error occurred while requesting " + getUrl());

 throw new InvalidRequestException("there is some problem

with the request.", e);

 }

 return response;

 }

}

ChApter 9 OrgAnIze A test FrAmewOrk

130

This implementation class implements the abstract method and

this will be used in the test script to trigger the request. It throws the

InvalidRequestException.

Next, you need to create a Factory class, which will provide the request

object. Here is the sample code snippet:

public class HttpMethodFactory {

 public HttpRequest build(HttpMethodType type) {

 return type.createHttpRequest();

 }

}

It uses Java enums to create the required object based on the request.

The following is the sample code snippet of the enum:

public enum HttpMethodType {

 GET {

 @Override

 public HttpRequest createHttpRequest() {

 return new GetRequestImpl();

 }

 },

 // few more here

 };

 public abstract HttpRequest createHttpRequest();

}

This code creates the instance of the implementation class based on

the input.

You’re using the Factory design pattern and confining the request

object creation using the Factory class. The overall idea here is that you

need to write request component code that is easy to understand, is

extensible, and follows good design principles.

ChApter 9 OrgAnIze A test FrAmewOrk

131

The last part is how the Base Test processes the request objects.

For this, you need to create a request processor class. Take a look at the

following code snippet:

public class RequestProcessor {

 private String jwtToken;

 private Response response;

 // getter and setter

 public void get(String endpoint) {

 HttpRequest httpGet = new HttpMethodFactory().

build(HttpMethodType.GET);

 this.response = httpGet.setToken(jwtToken).setUrl(endpoint).

request();

 }

}

This class provides the usage pattern for the test class.

The request should be packaged together in a meaningful way so that

anyone who uses the API framework should be able to locate the required

things easily.

Take a look at the complete source code for the request package in the

GitHub project at https://github.com/Apress/Learn-API-Testing.

 Response
RestAssured requests return the Response object. Response objects can

be a JSON object or an array. So, you need a way to store and read the

response for assertions.

ChApter 9 OrgAnIze A test FrAmewOrk

https://github.com/Apress/Learn-API-Testing

132

Since you are using Jackson as the bean for storing and reading the

response, the code should be extensible for future requirements. For

example, if you find a new library or API that is better, then without major

changes in the source code, you should be able to add support for the new

library or the API.

You need to create an interface for each of the Java POJO object types

and have an implementation class that does the actual work. This way, if

in the future a new library or API is found to be useful, you can just quickly

add support for it without changing any of the existing code base.

The contact management application response has a contact model,

which is processed by Jackson-Databind. Each of these types returns

different object types. The contact model will return a Contact and a

List<Contact>.

You need to develop an abstract class for each of the response types,

and you need a Response object getter and setter to get/set the response

to and from the test script. If you look at the response types, you have two

different types of responses. So, there will be two abstract classes and each

abstract class will have an implementation class. This is a good example

of a Factory design pattern that you implemented in the request package.

But, now you need to get the object from the single source, so this is the

best case for utilizing the Abstract Factory design pattern4.

You need to create a few additional classes here: an AbstractFactory

class and a FactoryCreator class. To fulfill the design principles, each of

the abstract classes has to implement the request type interface, which we

call as ResponseMarket.

Let’s check out a code snippet of each of these classes.

The following is the abstract class:

public abstract class ContactResponse implements

ResponseMarker {

4 https://en.wikipedia.org/wiki/Abstract_factory_pattern

ChApter 9 OrgAnIze A test FrAmewOrk

https://en.wikipedia.org/wiki/Abstract_factory_pattern

133

 private Response response;

 // getter and setter

 public abstract Contact getContact() throws

InvalidResponseException;

}

The Implementation class has the Jackson-Databind code and throws

the InvalidResponseException:

public class ContactResponseImpl extends ContactResponse {

 @Override

 public Contact getContact() {

 ObjectMapper objectMapper = new ObjectMapper();

 Contact contact;

 try {

 contact = objectMapper.readValue(getResponse().asString(),

Contact.class);

 } catch (JsonProcessingException e) {

 log.error("error occurred while reading the response

array.");

 throw new InvalidResponseException("there is some problem

with the response.", e);

 }

 return contact;

 }

}

The Factory class code is almost similar to the request factory

classes. The only difference is you are creating a factory from the abstract

factory, so you need an additional class named FactoryCreator. See the

following code:

public class ResponseFactoryCreator {

ChApter 9 OrgAnIze A test FrAmewOrk

134

 private ResponseFactoryCreator() {}

 public static ResponseAbstractFactory getFactory() {

 return new ResponseFactory();

 }

}

The last thing is the response processor, which is used by the test

script. The response processor does the processing of the response sent

from the server in a response object. Take a look at the following code

snippet to see how the response is processed:

public class ResponseProcessor {

 ResponseAbstractFactory responseFactory =

ResponseFactoryCreator.getFactory();

 private Response response;

 // getter and setter

 public Contact getResponseContact() {

 return responseFactory.getContactResponse().

setResponse(this.response).getContact();

 }

 // few more here

}

The highlighted line shows the usage of the response factory created

through the response factory creator class.

As stated in the above section, the overall idea here is that you need to

write response component code that is easy to understand, is extensible,

and follows good design principles. Needless to say, it helps in building

modular and reusable code.

Take a look at the complete source code for the response package in

the GitHub project at https://github.com/Apress/Learn-API-Testing.

ChApter 9 OrgAnIze A test FrAmewOrk

https://github.com/Apress/Learn-API-Testing

135

 Exceptions
Request and response components will throw exceptions when you pass

invalid request parameters or something bad happens. So, you need to add

user-friendly exceptions which, when thrown, have a friendly message that

helps in understanding what precisely went wrong.

You need to create InvalidRequestException and

InvalidResponseException class files, which extend the

RuntimeException standard exception class. Let’s look at the code snippet

of these classes:

public class InvalidRequestException extends RuntimeException {

 public InvalidRequestException(String errorMessage,

Throwable err) {

 super(errorMessage, err);

 }

}

public class InvalidResponseException extends

RuntimeException {

 public InvalidResponseException(String errorMessage,

Throwable err) {

 super(errorMessage, err);

 }

}

It is preferred to have custom exceptions for better readability of the

code, and most importantly, it helps in debugging.

ChApter 9 OrgAnIze A test FrAmewOrk

136

 Configuration
You need to set the configuration of the project. This helps in testing

multiple environments on the same endpoints with different or the same

dataset. Configuration classes usually reside under src/test/java.

Let’s go through the required configuration classes in the following

section.

 Properties File
Create an environment-specific properties file under src/test/resources

under a directory named properties. Properties files will be specific

to each of the environments. For example, dev.properties is for the

development environment, test.properties is for the test environment,

stage.properties is for the staging environment, and prod.properties is

for the production environment. These property files have the test data for

different environments.

Add another file named REST-endpoints.properties. This will store

contact management application endpoints.

Add the following test property in the <env>.properties file. For

now, you will be using only one URL for all environments. But in the real

world, you will have different environments and different URLs, so the url

property will change accordingly.

URL

url=http://localhost:8080/app

Add the following properties in the REST-endpoints.properties

file; these are the endpoints of the contact management sample web

application:

REST Endpoints

Authentication

ChApter 9 OrgAnIze A test FrAmewOrk

137

login=POST,/auth/authenticate

Add Contact

contact.add=POST,/api/v1/contacts

Contact List

contact.list=GET,/api/v1/contacts

Find Contact

contact.find=GET,/api/v1/contacts/{id}

Update Contact

contact.update=PUT,/api/v1/contacts/{id}

Delete Contact

contact.delete=DELETE,/api/v1/contacts/{id}

Take a look at the configuration properties located at https://github.

com/Apress/Learn-API-Testing.

Let’s discuss the config classes in the following sections.

 Spring
The Java Spring configuration is used for loading the properties file. It

helps in setting up environment-specific test data while running tests.

For example, if you want to run smoke tests on specific environments

from the command prompt, you can pass a value to the given variable,

Denv=<environment>, and the test data present in <environment>.

properties file will be loaded for test execution.

Create a package in src/test/java named com.contact.mgmt.api.

config and create a Java file named SpringBeanConfiguration. Add the

following lines of code:

@Configuration

@ComponentScan

public class SpringBeanConfiguration {

 @Bean

ChApter 9 OrgAnIze A test FrAmewOrk

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing

138

 public static PropertySourcesPlaceholderConfigurer

propertyConfig() {

 return new PropertySourcesPlaceholderConfigurer();

 }

}

This is the standard code provided by org.springframework for a

properties file configuration.

Next, you need to create a config class that will use the properties file at

runtime. Create another Java file named TestConfig in the same package

and add the following lines of code:

@Configuration

@PropertySource("classpath:properties/${env}.properties")

public class TestConfig {

 @Value("${url}")

 private String url;

 public String getUrl() {

 return url;

 }

}

Check the annotation @PropertySource. It has a path to the properties

file, which will be used to set environment-specific test data.

The value of the environment variable ${env} will be picked up from

the command prompt with values viz., dev, test, stage, and prod,

respectively.

Check the following example. In this command, the environment is set

to test. This is the test environment on which the tests will get executed.

-Denv=test

ChApter 9 OrgAnIze A test FrAmewOrk

139

 Application Configuration
You need to access the contact management endpoints, and

for that you need to create another configuration file. Name it

ContactManagementConfig.java and create a Java class in the

package com.contact.mgmt.api.config. This class will be used for

reading the API endpoints. Here is the sample code snippet from the

ContactManagementConfig class:

@Configuration

@PropertySource("classpath:properties/REST-endpoints.

properties")

public class ContactManagement {

 @Value("${login}")

 private String LOGIN;

 @Value("${contact.add}")

 private String ADD_CONTACT;

 public String authentication() {

 return LOGIN.split(",")[1];

 }

 public String addContact() {

 return ADD_CONTACT.split(",")[1];

 }

}

The first line reads the endpoints properties file; this is the standard

way of reading the properties file in spring config.

The second line reads the property login from the rest API endpoints

properties file and stores it into the local variable LOGIN.

ChApter 9 OrgAnIze A test FrAmewOrk

140

Authentication is done by the following lines of code:

public String authentication() {

 return LOGIN.split(",")[1];

}

It returns the login auth/authenticate endpoint to the caller. You call

split because you need to read the string after the comma, which is the

actual endpoint. Look at the REST-endpoints.properties in the following

section for the properties.

 Application Context
You need to set the Spring application context. ApplicationContext.java

does the required job for you. It gives you access to the TestConfig and

ContactManagement objects, which are called from the test script. Add this

class under the same package as the other config files, com.contact.mgmt.

api.config.

 Application Config
The application config will help in providing the complete URL of the

application with the help of ApplicationContext, which returns the URL,

and ContactManagementConfig, which returns the endpoint. Check the

following code snippet of AppConfig.java. This class also needs to be

added in the com.contact.mgmt.api.config package.

public class AppConfig {

 private static ApplicationContext applicationContext = new

ApplicationContext();

 public static String getUrl() {

 return applicationContext.getUrl();

 }

ChApter 9 OrgAnIze A test FrAmewOrk

141

 public static ContactManagementConfig

getContactManagementConfig() {

 return applicationContext.getContactManagementConfig();

 }

}

 Complete URL For the Test Script
Now you need to get the complete URL of the endpoint in the test script.

This can be done by an enum class, as shown in following code snippet of

ContactManagement.java. Add this class under the same package as the

other config classes you added in prior sections. You will see the usage of

this class in the next chapter when you write the first test script.

public enum ContactManagement {

 ADD_CONTACT {

 @Override

 public String url() {

 return AppConfig.getUrl() + AppConfig.

getContactManagementConfig().addContact();

 }

 },

 UPDATE_CONTACT {

 @Override

 public String url() {

 return AppConfig.getUrl() + AppConfig.

getContactManagementConfig().updateContact();

 }

 },

 FIND_CONTACT {

 @Override

 public String url() {

ChApter 9 OrgAnIze A test FrAmewOrk

142

 return AppConfig.getUrl() + AppConfig.

getContactManagementConfig().findContact();

 }

 },

 GET_ACTIVE_CONTACTS {

 @Override

 public String url() {

 return AppConfig.getUrl() + AppConfig.

getContactManagementConfig().getActiveContacts();

 }

 },

 DELETE_CONTACT {

 @Override

 public String url() {

 return AppConfig.getUrl() + AppConfig.

getContactManagementConfig().deleteContact();

 }

 };

 public abstract String url();

}

Take a look at the complete source code of config classes located at

https://github.com/Apress/Learn-API-Testing.

 Test Data
You need test data to test the application. For example, for login and to get

the token, you need to have an authentication payload. To create or update

a contact, you need a request payload.

The next sections show examples for storing the test data.

ChApter 9 OrgAnIze A test FrAmewOrk

https://github.com/Apress/Learn-API-Testing

143

 JSON File

Add a folder under src/test/resources as authentication, create a JSON

file named adminPayload.json, and add the following contents to the JSON file:

{

 "userName": "admin",

 "password": "test123"

}

This is the userName and password payload for auth/authenticate on

the auth server. This is the only user you have in the contact management

application.

auth/authenticate will send the JWT after a successful login.

 Payload for POST and PUT HTTP Methods

Add a folder under src/test/resources named payload/contact, create

JSON files named contact.json and updateContact.json, and add the

following contents to the JSON file. You will use these JSON files in the test

script as a payload for the POST and PUT requests.

contact.json

{

 "firstName": "Jagdeep",

 "lastName": "Jain",

 "email": "jj@gmail.com"

}

update_contact.json

{

 "firstName": "Praveen",

 "lastName": "Jain",

 "email": "pj@gmail.com"

}

ChApter 9 OrgAnIze A test FrAmewOrk

144

Take a look at the complete source code in the GitHub project at

https://github.com/Apress/Learn-API-Testing.

 User Authentication
Authentication is the entry point in the test script. Each test script starts

with setting up the user authentication and then hitting the endpoint. This

class wraps the RestAssured API and provides the JWT token for accessing

the endpoints. This will return the response RestAssured object, and from

this object you can get the JWT token.

Create a class named Authentication under com.contact.mgmt.

api.auth. The following is the RestAssured code showing how the

authentication is done:

public Authentication init() {

 String endPoint = getTestConfig().getUrl() +

getContactManagement().authentication();

 try {

 String requestPayload = "src/test/resources/authentication/

adminPayload.json";

 Response response =

 given()

 .body(new File(requestPayload))

 .contentType("application/json")

 .when()

 .post(endPoint);

 this.response = response;

 this.jwtToken = response.getHeader("Authorization");

 setJwtToken(this.jwtToken);

 } catch (JSONException | IllegalArgumentException e) {

 log.error("error occurred in authentication.");

ChApter 9 OrgAnIze A test FrAmewOrk

https://github.com/Apress/Learn-API-Testing

145

 throw new InvalidRequestException(

 "there is some problem with " + "the " +

"authentication.", e);

 }

 return this;

}

You pass the JSON payload as a file and therefore the body has the

File object.

application/json is the content type of the payload.

url is the application URL under test.

Take a look at the authentication class in the GitHub project at

https://github.com/Apress/Learn-API-Testing.

 Processor
This is the most important part of the test framework. It helps you to write

clean test scripts with minimal lines of code. You need a fluent way of

accessing the request and response. I discussed the request and response

processor in the above sections when discussing the request and response

classes.

The RequestProcessor class helps in requesting the resource from

the test script. It consists of HTTP methods, which are called from the

test script.

The ResponseProcessor class processes the responses for fluent

assertions. These classes act as a bridge between the RestAssured APIs, the

response processor implementation, and the test script.

You will explore the usage in the next chapter.

ChApter 9 OrgAnIze A test FrAmewOrk

https://github.com/Apress/Learn-API-Testing

146

 Model
Jackson-Databind does the JSON-to-Java object conversion, and for that you

need to have the model class that can store the response as a Java object. So,

you need to create a Contact model as a POJO (Plain Old Java Object5).

Take a look at the model package for Contact POJO. This will store the

response processed by Jackson-Databind.

 Test Framework
You expect the test framework to do all the routine work for you.

TestNG is one of the popular test frameworks in the Java community.

Let’s understand what it needs for efficient test case development and

execution.

You need to add a testing XML file to set up the test suite. This needs to

be added for executing a test suite in the Maven profile.

Create a new file named build-acceptance-tests.xml under src/

test/resources/test-suite/ folder and add the following contents to the

file. You will add the test name in the next chapter.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="Contact Management Build Acceptance Tests"

parallel="tests" thread-count="10">

 <test name="Auth API Tests">

 <classes>

 <class name=""/>

 </classes>

 </test>

</suite>

5 https://en.wikipedia.org/wiki/Plain_old_Java_object

ChApter 9 OrgAnIze A test FrAmewOrk

https://en.wikipedia.org/wiki/Plain_old_Java_object

147

Add the following lines of code in pom.xml to test the test suite:

<profiles>

 <profile>

 <id>buildAcceptance</id>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-plugin</artifactId>

 <version>${maven.surefire.plugin.version}</version>

 <configuration>

 <suiteXmlFiles>

 <suiteXmlFile>src/test/resources/test-suites/

build-acceptance-tests.xml</suiteXmlFile>

 </suiteXmlFiles>

 </configuration>

 </plugin>

 </plugins>

 </build>

 </profile>

</profiles>

In the sections above, you added all the required components to the

test framework.

You can download the complete source code from the GitHub

repository at https://github.com/Apress/Learn-API-Testing.

ChApter 9 OrgAnIze A test FrAmewOrk

https://github.com/Apress/Learn-API-Testing

148

 Logger
Add the log4j.xml file under src/java/main/resources and the log4j-

test.xml in src/test/java/resources and add the following lines of

code. This is the logging configuration for logging on the console. The

configuration is self-explanatory. For more information, follow the

official document at https://logging.apache.org/log4j/2.x/manual/

configuration.html .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration xmlns="http://logging.apache.org/log4j/2.0/config">

 <Properties>

 <Property name="CONSOLE_LOG_PATTERN">

 %-5p | %d{yyyy-MM-dd HH:mm:ss} | [%t] %C{2}

(%F:%L) - %m%n

 </Property>

 </Properties>

 <Appenders>

 <Console name="console" target="SYSTEM_OUT">

 <PatternLayout

 pattern="${CONSOLE_LOG_PATTERN}" />

 </Console>

 </Appenders>

 <Loggers>

 <Logger name="com.contact.mgmt" level="info" />

 <Logger name="org.springframework" level="error"/>

 <Root level="warn">

 <AppenderRef ref="console" />

 </Root>

 </Loggers>

</Configuration>

ChApter 9 OrgAnIze A test FrAmewOrk

https://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/configuration.html

149

The important thing is to understand the logging level; you use the

logging level as info for all the files under the com.contact.mgmt package

and error for org.springframework.

 Util
You need to have the utility class for routine work like sorting the response

and such. This class can be added under src/main/java in the util

package. Here is the sample code snippet of the Util class:

public class Util {

 private Util() {}

 public static List<String> sortList(List<String> list) {

 Collections.sort(list);

 return list;

 }

}

Making the functions as static gives the ability to call them without

creating the instance of the class.

 Test Execution
TestNG and Maven have excellent support for test execution. You can

create a test suite in TestNG and supply this test suite as an XML file to the

Maven profile. Maven has various options to execute the test suite and the

test case. Even at the method level, you can execute a test provided that the

test method has no dependency.

ChApter 9 OrgAnIze A test FrAmewOrk

150

 Debug Config
While working on adding dependencies and plugins under Maven Surefire

headings, you learned that if you set the debugForkedProcess flag as true,

you can debug the test execution path. You will explore debugging in the

next chapter when you write the first test script.

 Test Driver
A test driver is a concept that is used for driving the test scripts by

providing all the helpful methods that are routine for a test script. You

will be developing the BaseTest class in the next chapter, which has all

the routines that are required by the test script. The BaseTest class is the

driver of test scripts.

 Summary
In this chapter, you went through the components of the test framework

and how to organize it. You added required dependencies for assertions,

testing, and all other required components that you need for writing a test

script. You added all of the required components for testing API endpoints,

such as requests, responses, HTTP authentication, and HTTP methods

GET, POST, PUT, and DELETE. You also added support for reading the

response and how the request and response are processed in the test

script. With the help of the Spring Bean configuration, you learned that you

can execute tests in different environments.

In the next chapter, you will write your first test script, execute it, and

check the results.

ChApter 9 OrgAnIze A test FrAmewOrk

151

CHAPTER 10

First Test Script
In the previous chapter, you developed a test framework from scratch. This

chapter is an extension of that chapter. Now you will develop the first test

script, execute it, and verify the results.

At the end of this chapter, you should have a good knowledge of how to

write a test script that takes less development time, is easy to develop, and

has all the characteristics of a good test script.

For a test framework to be successful, a tester should be able to write

test scripts that are readable, require fewer lines of code, and take less

development time.

As mentioned in the previous chapter, a test script should have the

minimum lines of codes possible and follow the guidelines mentioned

under the section “Components of Test Script” in Chapter 7.
The following sections offer the foundation for developing test scripts.

 Developing Your First Test
A test script has the following steps for testing the endpoint:

 1. Application URL.

 2. Login user details.

 3. Authentication.

 4. JWT token.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_10

10.1007/978-1-4842-8142-0_7
https://doi.org/10.1007/978-1-4842-8142-0_10#DOI

152

 5. Pass the JWT token as the request header in the

request.

 6. Request endpoint with required query, payload,

and so on.

 7. Read the response.

 8. Do the assertions on the response object.

For test scripts, these steps should be seamless and should include

local variables storing the application URL, user details, storing the

JWT token, passing in the request, and so on. You already developed

a mechanism for test config as config classes with the help of a Java

Spring configuration. A request and response processor will do the job of

processing the request and response. Assertions should be a part of the test

script and cannot be common code.

All of these steps are required for each test scripts, so you can put the

steps in a common class and then utilize the common code from the test

scripts. Name the common class as BaseTest.java.

Let’s work on the BaseTest.java class in the following section.

 Base Test
In the previous chapter, you developed the framework from scratch. Now,

let's extend it.

Add BaseTest.java under src/test/java in the package com.

contact.mgmt.api.tests and add the code for authentication, request

methods, and capturing the response. Each of the test scripts will extend

the BaseTest class.

Chapter 10 First test sCript

153

 Authentication

Authentication is straightforward and requires a single line in the

BaseTest class:

protected void authentication() {

 this.jwtToken = new Authentication().init().getJwtToken();

}

The BaseTest class stores the JWT in the local variable for the request

processor.

 Request Processor

The request processor should be fluent, which helps in writing fewer lines

of code. Initialize the request processor and add the following method:

private RequestProcessor requestProcessor;

protected RequestProcessor request() {

 requestProcessor = new RequestProcessor();

 requestProcessor.setJwtToken(this.jwtToken);

 return requestProcessor;

}

This method returns the request processor object and helps in the

fluent call to the request method.

 Response Processor

Once the API has requested the resource from the server, you need to

have a way to store the server response. The request processor object has

the response object. You need to set the response object in the request

processor.

Chapter 10 First test sCript

154

The following method does the job of processing the response for the

test script:

protected ResponseProcessor response() {

 ResponseProcessor responseProcessor = new ResponseProcessor();

 this.response = requestProcessor.getResponse();

 responseProcessor.setResponse(this.response);

 return responseProcessor;

}

This method returns the response processor object and helps in a

fluent call to the response methods.

Apart from this, you can add the getJwtToken(), set JwtToken(),

getResponse(), and setResponse() methods. This will be useful in

negative testing.

This is all you need for a test script. Take a look at the source code of

auth, config, and BaseTest classes in the GitHub project at https://

github.com/Apress/Learn- API- Testing.

 First Test
Let’s work on the create contact test case. The following are the steps for

creating a contact using the API endpoint:

 1. Log in using admin.

 2. Get the JWT token.

 3. Call HTTP POST to create contact API endpoint /

api/v1/contacts with a payload

{

 "firstName": "Jagdeep",

 "lastName": "Jain",

 "email": "jj@gmail.com"

}

Chapter 10 First test sCript

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing

155

and pass JWT as the bearer in the

Authorization header.

 4. Verify the response status code as 201.

You need a valid JWT, the payload for a new contact, and the endpoint.

All are part of the BaseTest class.

Before starting the test script development, you need to add the

payload JSON under src/test/resources/, create a folder structure as

payload/contact/, and add the contact.json file, which has details of

the contact you want to add in the contact management application.

Create a new test class Java file called CreateContactTest.java,

extending the BaseTest class under the package com.contact.mgmt.

api.tests.

Recall from Chapter 7 that you need to add setup() and test().

For now, you don't need tearDown() since you are not resetting any

configuration. Since you are using JWT for authentication, the token will

be valid until the expiry of the timestamp. So, if you forcibly invalidate or

blacklist the token, the test scripts will start failing since the tests will be

running in parallel. You do not want to forcibly invalidate the token.

It is good to run the invalid JWT test after the test suite execution is

complete. Moreover, this may be a duplicate effort if security testing is also

testing the authentication as a part of the security test plan.

The following is the code snipped from the test script:

public class CreateContactTest extends BaseTest {

 @BeforeTest

 public void setup() {

 authentication();

 }

 @Test(description = "verify response of POST /api/v1/

contacts", priority = 1)

Chapter 10 First test sCript

10.1007/978-1-4842-8142-0_7

156

 public void testAddContact() {

 String NEW_CONTACT = "src/test/resources/payload/contact" +

"/contact" + ".json";

 request().post(ContactManagement.ADD_CONTACT.url(),

new File(NEW_CONTACT));

 assertThat(response().getResponse().getStatusCode()).

isEqualTo(201);

 assertThat(response().getResponse().getStatusLine()).

isEqualTo("HTTP" + "/1.1 " + "201 ");

 }

}

Inside the setup() method, you are calling the authentication()

method to get the JWT token. The BaseTest class will store the JWT token

in the instance variable.

Inside the testAddContact() method, since you already have the JWT

token in the context of the BaseTest class, you can now call the HTTP POST

method on the contact management application to create a contact.

The HTTP request is shown by the highlighted code in the test method.

You can see that it’s a fluent call that increases the readability of the test

script and improves the development time.

You also want everyone in the team to understand the test at the first

glance, so you need to add the description.

The following line of code shows how you need to add a summary of

the test in a single line. This should be part of the software test automation

best practices.

@Test(description = "verify response of POST /api/v1/contacts",

priority = 1)

Chapter 10 First test sCript

157

Look at the test script. It is just a single-line test. You just call the POST

HTTP method and then perform the assertions. All the routine stuff is

taken care of by the BaseTest class. This is how you need to write test

scripts going forward for the remaining endpoints.

Take a look at the complete source code at GitHub location https://

github.com/Apress/Learn- API- Testing.

You have developed the first test, and if you continue at this speed, in

a couple of minutes, a number of tests will be ready; all of them belong to

some test suite or the other.

Let's discuss developing a test suite in the following section.

 Test Suite
TestNG has various options that help in configuring the test suite as per

your needs. Let's explore how to do it.

 TestNG XML
You need to create a TestNG XML file under the /resources/test-suite/

folder. Create a build-acceptance.xml file and add the following content:.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="Contact Management Dry Run Tests" parallel="tests"

 thread-count="1">

 <test name="Create Contact API Tests">

 <classes>

 <class name="com.contact.mgmt.api.tests.

CreateContactTest"/>

 </classes>

 </test>

Chapter 10 First test sCript

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing

158

</suite>

TestNG helps in executing tests in parallel at the test, class, or method

level. You can specify the level in the parallel parameter in the XML. You

can also specify the thread count with the thread-count parameter.

You also need to specify the TestNG XML file path in the pom.xml

inside the build tag. When a profile is included in the Maven command, it

executes the test suite specified in the TestNG file.

The following is the code snippet of the Maven profile:

<profile>

 <id>e2e</id>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-plugin</artifactId>

 <version>${maven.surefire.plugin.version}

</version>

 <configuration>

 <suiteXmlFiles>

 <suiteXmlFile>

 src/test/resources/test-suites/

build-acceptance.xml

 </suiteXmlFile>

 </suiteXmlFiles>

 </configuration>

 </plugin>

 </plugins>

 </build>

</profile>

Chapter 10 First test sCript

159

Take a look at the complete pom.xml at GitHub location https://

github.com/Apress/Learn- API- Testing.

 Executing a Test
Once you have developed the test scripts for a given feature under a

test, you can create a test suite and execute all of the tests using a single

command. The following section shows how to execute the test suite as

well as an individual test script.

 Execute a Test Suite
Execute the following command in the terminal window to execute the

test suite:

$ mvn clean test -Pe2e -Denv=test

mvn clean test is the standard command to execute the test(s).

mvn -Pe2e is used to pass the Maven profile, which is configured with

TestNG XML.

-Denv is used to pass the environment on which you need to execute

the test script.

 Execute an Individual Test
Execute the following command in the terminal window to run an

individual test:

$ mvn clean test -Dtest=CreateContactTest -Denv=test

Since you are using Maven as a tool for building and packaging, you

have all the Maven commands at your disposal.

-Dtest is used to pass the test class name.

Chapter 10 First test sCript

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing

160

For more commands, refer to the Maven documentation1.

 Execution Results
TestNG provides a good HTML report of execution results. Let's look at the

TestNG execution report in the following section.

 TestNG Report
In Chapter 9, you configured the TestNG report in the “Dependencies and

Plugins” section under the /test-output folder. Open the index.html file

and check the execution results, shown in Figure 10-1.

Figure 10-1. Surefire test results

1 https://maven.apache.org/guides/getting-started/maven-in-five-
minutes.html#running-maven-tools

Chapter 10 First test sCript

10.1007/978-1-4842-8142-0_9
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html#running-maven-tools
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html#running-maven-tools

161

Under the Results left-hand menu, you can see 1 method, 1 passed

and you can see the name of the method as well.

 Logging
While developing tests, invariably you want to check the request and

response. RestAssured provides a method that can be used to check the

execution logs:

 log().all()
given().log().all()

 .header("Authorization", "Bearer " + auth)

 .contentType("application/json")

 .when()

 .get(url, param);

This code snippet shows how to use log().all() in the request code.

Execution results are shown in the following console output:

[INFO] Running com.contact.mgmt.api.tests.CreateContactTest

Request method: POST

Request URI: http://localhost:8080/app/api/v1/contacts

Proxy: <none>

Request params: <none>

Query params: <none>

Form params: <none>

Path params: <none>

Headers: Authorization=Bearer eyJhbGciOiJIUzI1NiJ9.

eyJzdWIiOiJhZG1pbiIsImV4cCI6MTY0NTI2MTUwNCwiaWF0IjoxNjQ1Mj

U5NzA0fQ.pHl3OBgOBejSv8sJ4LIKgdQFxnQacMyLKyoK96QuXcw

Chapter 10 First test sCript

162

 Accept=*/*

 Content- Type=application/json

Cookies: <none>

Multiparts: <none>

Body:

src/test/resources/payload/contact/contact.json

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0,

Time elapsed: 4.128 s - in com.contact.mgmt.api.tests.

CreateContactTest

 Response Time
RestAssured provides the time() and timeIn() methods that can be

used to measure the response time. This can be used for assertions if you

want to make sure that the response time is not exceeding the maximum

response time.

Look at the following lines of code:

Response response =

 given()

 .body(payload)

 .header("Authorization", "Bearer " + auth)

 .contentType("application/json")

 .when()

 .post(url);

log.info(response.time());

log.info(response.timeIn(TimeUnit.SECONDS));

This will print the response time. TimeUnit has other options so you

can get time in MILLISECONDS, MICROSECONDS, NANOSECONDS, DAYS,

HOURS, and MINUTES.

Chapter 10 First test sCript

163

 Debug
Once in a while, when the individual test or the test suite fails, you need to

debug the test script. The following steps help in setting up the debugger in

the Intellij IDE:

 1. Click Run ➤ Edit Configuration.

 2. Click the plus icon (+) and select Remote

JVM Debug.

 3. Enter api-test-config as the name.

 4. Update Host to localhost and Post as 5005 (if not set

already).

 5. Click Ok.

These steps create a debug configuration that is used during the

debugging.

Open pom.xml and update <debugForkedProcess>true</

debugForkedProcess> to true.

Now execute the test from the command prompt. It will show you the

following in the terminal window:

 T E S T S

Listening for transport dt_socket at address: 5005

Once you get the message in the console that the test is listening on the

port 5005, click the debugger icon in the IDE. If you have set up the debug

pointer, the test will stop on the pointer and you have the option to resume

or end the test.

In the IDE, it will look like Figure 10-2.

Chapter 10 First test sCript

164

Figure 10-2. Intellij IDE console

 Summary
In this chapter, you learned how to extend the test framework and add a

BaseTest class that does the work required for a test script. You also added

TestNG XML to create a test suite. You learned how to run a single test

as well as a test suite. You also saw where to look for execution reports.

You now know about RestAssured’s log().all() and response.time()

methods and how to debug a test execution.

This chapter officially concludes learning API testing. In the next

chapter, you will go through how to check and use API documentation for

API testing.

Chapter 10 First test sCript

165

CHAPTER 11

API Documentation
From Chapter 2 to Chapter 10, you learned about a web application, its

architecture, authentication, requests, responses, practices, standards,

and guidelines for effective test automation. You explored different tools

like cURL, Postman, and RestAssured. You now understand the API testing

paradigm (internal/external APIs, consumer-driven contract testing,

etc.). With this, you learned how to perform API testing. However, you

have not covered how the tester is informed about what to test in the

API. If there is a change in the endpoint, payload, or model, how will the

tester be informed of the new changes? In this chapter, you’ll explore API

documentation, which will be developed using the Swagger UI1, and how

to read the documentation, which will be useful when writing test scripts.

At the end of this chapter, you will have a solid understanding of

how to read API documentation using Swagger, which is one of the most

popular API documentation tools in the software industry.

It is a standard practice for any API development team to build

documentation of the endpoints. It is particularly useful when the API

endpoints are exposed to the external world.

API documentation should be one of the mandatory requirements for

writing API tests. In the following sections, you will explore the need for

API documentation and how to read the Swagger API documentation for

better understanding and testing.

1 https://swagger.io/

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_11

https://doi.org/10.1007/978-1-4842-8142-0_2
https://doi.org/10.1007/978-1-4842-8142-0_10
https://swagger.io/
https://doi.org/10.1007/978-1-4842-8142-0_11#DOI

166

 Need
In agile methodology, we define requirements as a user story. For example,

say a user of an Amazon mobile app wants to add a product to their wish

list. This single line story helps the development team to understand the

requirement before providing working code.

Once the story development starts, numerous development artifacts

are produced and they are compiled into a document describing the APIs.

The document is shared and consumed among other teams. In the event

an individual develops such a document on their own, they are likely

to develop the document according to their own limited understanding

and pass it on to the teams who are consuming the API endpoint(s). In

the worst case scenario, there will be a great deal of back and forth on

the clarity of the document. Moreover, if any definition changes but the

individual developer forgets to update the change in the document, it will

translate into a nightmare for the team consuming it. And this is so far just

about the developer who is trying to access the API. When the document

gets to the tester and the definition is again changed (in agile development,

changes are inevitable), it will impact the release of the product and add to

the cost of testing.

Another significant point is that each team may follow a different

documentation style. So how to communicate effectively is another aspect

that needs to be looked into.

You need a standard approach towards API documentation.

A standard for API documentation will not only help the consuming

development team but also the other stakeholders to correctly interpret

the behavior of an API.

In the next section, you will explore the Swagger UI, which has great

features for a development team and is highly configurable as well.

Chapter 11 apI DoCumentatIon

167

 Swagger
The biggest advantage with Swagger is that it provides a way to self-

describe the structure of the endpoint.

Refer to Appendix B to launch the contact management application,

Swagger. It will look like Figure 11-1.

Figure 11-1. Swagger’s UI

In Figure 11-1, the API documentation shows five endpoints. It also

shows a visual and colorful representation of the API endpoints. It has the

HTTP method, the endpoint URI, and a short description of what the API

endpoint does.

Chapter 11 apI DoCumentatIon

168

Contact management endpoints are secure in Swagger. It requires a

bearer token for authorization. Secured APIs can be accessed with the

valid JWT only, and you can obtain the JWT from the cURL command.

Enter the following command in the terminal window:

$ curl -d '{"userName": "admin", "password": "test123"}' -H

'Content-Type: application/json' http://localhost:8080/app/

auth/authenticate -v

Copy the JWT and click the Authorization button in the Swagger UI. It

will open a dialog box, as shown in Figure 11-2.

Figure 11-2. Swagger authorization

Enter the JWT with a prefix of Bearer in the dialog box, click Authorize,

and click the Close button. Now you can check the details of the API

endpoint. Having authorization in Swagger gives completeness to the

endpoints’ cURL commands. You can directly use these cURL commands

given on the Swagger UI page and execute the same for testing.

Besides endpoints representation, it shows the entity or the model

used in the application. The bottom of the page shows a contact model.

See Figure 11-3. It has a contact model for a request and a response.

Expanding the models shows the respective payload for the request and

the response.

Chapter 11 apI DoCumentatIon

169

Figure 11-3. Swagger models

The Swagger UI is configurable and you can hide the details if you

don’t want to share them with other teams. Hide information that is not

required for testing or not requested by other teams. Otherwise, this

information will attract a lot of questions, and testing additional items will

take a lot of time.

Let’s get into the details of the first endpoint, which gets a list of all

contacts. The endpoint is GET /api /v1 /contacts. Click the endpoint.

Details of the endpoints are shown in Figure 11-4. You can see the

response codes and the description having a valid model. This is where

the tester has to note down what each response means associated with the

response code. The tester has to derive the scenarios that represent these

responses.

Chapter 11 apI DoCumentatIon

170

Figure 11-4. GET request

Swagger also gives you an option to try the API. Click the “Try it out”

button and it will give you an option to execute the API. This is a really cool

feature and can facilitate checking the results of the API implementation

without much effort. In short, it gives you visibility into how the API

behaves based on a given input.

Click the Execute button and you will see the screen shown in

Figure 11-5.

Chapter 11 apI DoCumentatIon

171

Figure 11-5. Swagger response

Figure 11-5 shows a complete cURL command, including the bearer

token. You can use this command without any changes and it will work as

expected.

Chapter 11 apI DoCumentatIon

172

Check the response. It has a request URL, the server response headers,

and the response body. You can download the response body and use it as

the expected JSON in the test script assertions.

Look at the model in Figure 11-6. It shows the contact request model

and the response model.

Figure 11-6. Swagger request and response models

Chapter 11 apI DoCumentatIon

173

When the contact is created, an autogenerated id is assigned by the

back-end code and that’s why it is not required, and therefore not shown,

in the Swagger UI.

The contact response model has an id, which you retrieve when you

do an HTTP GET to list all contacts.

The model also has information on the mandatory fields, which you

can use to write the test plan for mandatory field tests. You can also check

the data type of the parameters in the model. This information can be used

for writing tests around data types.

Look at the HTTP PUT in Figure 11-7 for updating a contact. It has a

parameter in the URL that needs to be provided by the user.

Chapter 11 apI DoCumentatIon

174

Figure 11-7. Swagger PUT request

Swagger provides the id field. You can pass on the id and try the API,

and it will work smoothly. You can copy the cURL command without any

changes and execute it in the terminal window.

Chapter 11 apI DoCumentatIon

175

Let’s try to find the contact; see Figure 11-8. You need to provide the

contact id and the Swagger UI will show you the contact retrieved via the

API. Check the response body shown in Figure 11-8.

Figure 11-8. Swagger GET request for finding a contact

With this discussion, you have completed the Swagger overview.

What you learned is that the API documentation provides the seed for

the test plan and the tester can utilize it for writing API test plans. API

documentation makes the tester’s life much easier. Instead of guessing the

response, they can now play around and understand the API behavior and

perform effective test automation.

Chapter 11 apI DoCumentatIon

176

 Summary
In this chapter, you learned about the need for API documentation.

You explored the Swagger UI, which is used for API documentation.

You now understand that it is very important for the team to have API

documentation for a better understanding of the behavior of the API

endpoint, and it really serves the purpose for good test coverage. If the

endpoints are exposed to the external world, API documentation is a must

for the success of the organization. In the next chapter, you will go through

a case study of a shopping cart application.

Chapter 11 apI DoCumentatIon

177

CHAPTER 12

Case Study: Shopping
Cart APIs
You covered API testing in the previous chapters. In this chapter, you will

implement your new knowledge in a shopping cart project. You will learn

how API testing is done in the software industry.

By the end of this chapter, you should be able to apply this knowledge

to the projects you are assigned currently.

Appendix C has the details of deploying the shopping cart application

that you are using for the case study.

One Klick Shop Inc.1 is a pioneer in selling digital items online. They

have a big team working 24/7, 365 days.

One Klick Shop Inc has evolved over a period of time and transformed

from a monolithic architecture to a RESTful architecture. It has also

adapted a JWT token-based authentication scheme for authenticating

each user on its website.

Working on a new technology is a tough call in the online shopping

industry. Timing is key since a delay of a few days in launching a new

feature can give competitors a palpable competitive advantage. Even a

small bug can cost much more than the overall budget of the project.

Let’s find out in the following sections how testing of new APIs is

completed by the development team.

1 A hypothetical company used for case study discussion

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0_12

https://doi.org/10.1007/978-1-4842-8142-0_12#DOI

178

Jay2 has recently joined the development team as a SDET (Software

Development Engineer in Test) and has been assigned the job of testing

the new endpoints.

The new team is named NeuKode3 and it is decided to do a three-

week sprint cycle. CI/CD will be set up in the development and test

environments, and the code will be deployed with every commit. The

plan is to check at the end of the sprint when all looks green on CI/CD,

and then the code will be deployed to the stage environment. After one

week of testing on stage, it will be released to the production environment.

The minimal viable product (MVP) is estimated to go to the market in 12

weeks, and the plan is to release the code base to production every month.

 Feature List
The following is a list of features for the MVP:

 1. New auth scheme (JWT token-based

authentication)

 2. User management CRUD operations

 3. Authentication and authorization (user roles and

permissions)

 4. Address management (billing/shipping)

 5. Payment details

 6. Product catalog

 7. Shopping cart

 8. Order management

2 A hypothetical name used for case study discussion
3 A hypothetical name used for case study discussion

Chapter 12 Case study: shopping Cart apis

179

 QA Responsibility Matrix
Let’s create a fictional scenario to illustrate how this might work in real

life. Jay is a senior team member. He asks for two team members who are

proficient in Java, with one to three years of experience in software testing,

or have good conceptual knowledge of software testing.

Jay informs his team that he has rich experience in writing test

frameworks. He is an expert in Java and related technologies, and he will

be the primary owner of the test framework code. One of his job roles will

be to facilitate the testing engineers, thus making sure that everyone on the

team is able to write the test scripts quickly and efficiently.

He conveys the responsibility matrix shown in Table 12-1 to the

management.

Chapter 12 Case study: shopping Cart apis

180

Table 12-1. Responsibility Matrix

Experience Level Responsibilities

0 to 1 year • Write test scripts

• Monitor test execution

1 to 5 years • includes above

• Fix test script failures

• report bugs

• Verify bugs

• document failures

6 to 10 years • includes above

• add code to the framework

• document usage

• test plan development

• test environment management

• debug production issues

10 years and above • includes above

• Framework design

• Code reviews

• participate in product roadmaps

• participate in product architecture discussion

• review design

• poCs

• Customer discussion

Now, let’s take a look at the sprint cycle.

Chapter 12 Case study: shopping Cart apis

181

 Sprint #
The team agrees upon the sprint cycle and related activities detailed in

Table 12-2.

Table 12-2. Sprint Plan

Sprint Week # Dev/Test/DevOps Production Release

First 3 • infra setup

• Backlog grooming, story pointing,

and sprint planning

• story grooming, development, and

testing

• sprint demo

• Backlog grooming, story pointing,

and sprint planning

• deployment to stage/uat

second 3 • product management feedback,

testing on stage environment

• story grooming, development,

and testing

• sprint demo

• Backlog grooming, story pointing,

and sprint planning

• deployment to stage/uat

Production
Deployment -
Release I

(continued)

Chapter 12 Case study: shopping Cart apis

182

Table 12-2. (continued)

Sprint Week # Dev/Test/DevOps Production Release

third 3 • product management feedback,

testing on stage environment

• story grooming, development, and

testing

• sprint demo

• Backlog grooming, story pointing,

and sprint planning

• deployment to stage/uat

Production
Deployment -
Release II

hardening

sprint

3 • product management feedback,

testing on stage environment

• story grooming, development, and

testing

• sprint demo

• Backlog grooming, story pointing,

and sprint planning

• deployment to stage/uat

• Bug fixes, regression testing, and

sign off on stage/uat environment

Production
Deployment - GA
Release

Based on this matrix, production deployment is set for every sprint.

Now, let’s explore how goal setting plays a crucial role in this process.

Chapter 12 Case study: shopping Cart apis

183

 Goal Setting
Jay also sets up goals for himself, such as what activities and aspects need

delegation to other engineering teams. These goals are additional goals,

apart from the project goals. He discusses the goals with his manager and

reaches an agreement on them.

 1. With every sprint, he ask for the application

performance report from the performance

testing team.

 2. At the start of every sprint, he gets in touch with the

UX team to get a better understanding of the feature

from the customer’s point of view.

 3. He improves the testing framework base code for

extensibility to new projects.

 4. He discuss the current progress with the product

management/beta customers.

In addition to the above, he adds self-improvement goals for himself.

 1. To improve the overall testing approach by sharing

and learning the test process and activities, both

within and outside the team

 2. To write a blog every month based on the things he

is doing

 Sprint One
As a precursor to the sprint, the team has a quick huddle and they come up

with the following items that will be used in all sprints.

Chapter 12 Case study: shopping Cart apis

184

 Sprint Guidelines
The team agrees on the following items.

 Definition of Done

The Development team finalizes the definition of done so that each

deliverable is counted and finalized before it goes to production.

Jay takes these notes and pins them on his desk so that he remembers

the definition while concluding the story/feature testing for the

given sprint.

 Story Pointing

The Development team also finalizes the story pointing method that they

will be using for t-shirt sizing for pointing the stories.

 Backlog Grooming

Scrum master Niel Knight4 also facilitates the backlog grooming sessions’

schedule. It is decided that at the end of each sprint, the team will gather

for a discussion on the backlog for the next sprint. Product Manager Keith

Strong5 will host the meeting to discuss and prioritize the stories based on

his discussion with beta customers and market research.

Neil Knight, the scrum master, also shares a dashboard that has

various progress charts (such as sprint velocity). Jay bookmarks the chart

that shows the current bugs’ status. He remains updated with the number

of bugs that are open/closed at any given point of time, and if there is

anything that he can help with in closing the bugs.

4 A hypothetical name used for case study discussion
5 A hypothetical name used for case study discussion

Chapter 12 Case study: shopping Cart apis

185

 Story Grooming

Keith Strong schedules the meeting for the stories that will be taken up in

the sprint.

Jay goes through the stories and makes notes. This helps him in

clarifying doubts during the meetings and also helping in undertaking

effective testing.

 QA Tasks
Jay starts a few of the things at the start of sprint #1. These are the items

that will be required in the upcoming sprints.

 Documentation

The very first thing he does is create a document named “OneKlickShop

Testing” on Confluence6, making sure that anyone joining the team has all

the stuff at their disposal. Also, team members can refer to this document

at any point during the product development or after.

He creates a few child pages under the main page.

The following is a list of the child pages with short descriptions:

 1. Test Environment Setup - IP/URL/SSH/proxy details

 2. Application Setup - Required software installations

and setup of required config

 3. Testing Objectives - What the testing outcome

should be

 4. CI/CD - Jenkins URL and job details, plus

information on the test execution cycle and

test results

6 www.atlassian.com/software/confluence

Chapter 12 Case study: shopping Cart apis

http://www.atlassian.com/software/confluence

186

 5. Code Quality - This will help in finding issues in the

testing source code.

 6. Definition of Done - This are agreed-upon points

based on the team meeting for story closure.

 7. Test Framework Guide - This document describes

how to write an effective test script.

 8. Coding Guidelines - This document describes how to

write better test code.

 9. Code Review Guidelines - Without putting in a lot

of effort, these standard points help in quick test code

reviews.

 10. Functional Testing - Functional testing to be

performed

 11. Non-Functional Testing – Non-functional testing like

security and performance testing

 12. Test Data - How to get the testing data and the

process of developing the test data for testing

 13. API Testing Guidelines - These guidelines help in

doing the effective testing without indulging too

much in the story/feature

 14. UI Testing Guidelines - These guidelines help in

doing the effective testing without indulging too

much in the story/feature

 15. Performance Testing Guidelines - To be discussed

with the product management

 16. Security Testing Guidelines - To be discussed with

the product management

Chapter 12 Case study: shopping Cart apis

187

 17. Test Plans - Central location of all test plans

 18. Feature Delivery Timeline - Includes JIRA stories

with each release

He makes a note to himself that the documentation should be updated

all the time.

 Test Environment

Jay starts working on setting up the testing infrastructure. He raises an IT

request for a test VM for all testing needs. He lists all the required software

development tools for setting up the application on the Confluence page.

Jay gets the test VM and starts setting up the testing environment.

 Setting Up the Application

The Development team works in parallel and provides the initial commit

to build the application. He follows the commands and starts setting up

applications in the test environment.

 QA Tools

Jay uses the following tools for test automation, test case management, and

tester productivity.

Jenkins: www.jenkins.io/download/ for test automation execution

and finding regression in the application.

Testlink: https://hub.docker.com/r/bitnami/testlink for test case

management. Testlink has various advantages over other test management

tools, like you can create a test plan by selecting tests from test suites, you

can assign a job to the QA, and there are various handy reports available.

Also, tests can be exported to the work document.

Test execution has manual/automation options that help find out the

automation coverage easily.

Chapter 12 Case study: shopping Cart apis

http://www.jenkins.io/download/
https://hub.docker.com/r/bitnami/testlink

188

For tracking stories to test case relation, Jay uses a label in JIRA called

test_script and plans to update JIRA once the story testing is completed.

Also, the test cases are created in Testlink by the JIRA prefix, which helps to

find the relevant test easily.

Requirements can be created in Testlink , which allows for traceability

as well. It also conveys what tests were executed on which build. The tool

has a good amount of information.

Jay knows that if SonarQube is set up, it is very easy to find code issues,

if any. SonarQube checks the source code quality in terms of coding

standards and Java concepts.

SonarQube: www.sonarqube.org/downloads/ for test code

quality check.

Jay sets up a code quality check tool. He sets up a SonarQube7 docker

container and adds the required configuration in the test framework

pom.xml.

<plugin>

 <groupId>org.sonarsource.scanner.maven</groupId>

 <artifactId>sonar-maven-plugin</artifactId>

 <version>${sonar.version}</version>

</plugin>

After the installation of SonarQube with the help of the documentation

on the SonarQube website8, he tests the setup by scanning the project with

the following command:

mvn sonar:sonar \

 -Dsonar.projectKey=eshop \

 -Dsonar.host.url=http://0.0.0.0:9000 \

 -Dsonar.login=<API_KEY>

7 www.sonarqube.org/
8 https://docs.sonarqube.org/latest/setup/get-started-2-minutes/

Chapter 12 Case study: shopping Cart apis

http://www.sonarqube.org/downloads/
http://www.sonarqube.org/
https://docs.sonarqube.org/latest/setup/get-started-2-minutes/

189

 Continuous Integration/Continuous Deployment

CI/CD solves the infrastructure problem where it is not required to

integrate and deploy the application source code manually. Nowadays it is

an integral part of every software development team.

The Development team works in parallel to set up things in order

to start working on the source code. They create a GitHub project for

application development.

Jay also creates a test repository on GitHub, adds a project,

and configures Jenkins with the GitHub repository. He also adds a

configuration that allows the execution of tests with every commit in the

GitHub repository. Without delay, he tests the Jenkins configuration so that

there are no surprises in the next sprint.

The project manager asks Jay to push the testing project in the

development repository and use the same dependencies in the testing

project. Jay clarifies that the testing code is not a shippable product.

Testers should not invest time in resolving the dependency. For example,

if the development team is using some old version of Spring but the test

framework requires a new version, then it will be a waste of time to make

the test framework code backward compatible.

 Targeted Features
Based on the feature list and product backlog, it is decided to develop the

following features in the first sprint:

• New auth scheme (JWT token-based authentication)

• User management CRUD operations

• Authentication and authorization (user roles and

permissions)

Chapter 12 Case study: shopping Cart apis

190

 API Endpoints
The Development team provides the draft version of the Swagger

document for the endpoints. Accordingly, Jay starts work on the test plan

and the reference requirement document.

 Unit Testing
Jay knows about the test pyramid. He asks the Development team for unit

testing reports so that he knows the test coverage. Then he can work on the

coverage of functional testing.

Jay sets up the test environment, and the test framework initial code

is committed to the test repository. This is required to start writing test

scripts.

 Test Plan Development
Jay starts on the test plan based on the story discussion with the product

manager and the story grooming meeting. He creates a test document and

shares it with the team. The idea is to get early feedback, if any.

Jay has a quick meeting on the testing expectations and boundaries to

make sure that he is not wasting time testing things that are not required

at this point in the project, such as the risk associated with or without the

redundant fields in the payload.

The approach is to complete the happy path first and then work on the

exhaustive testing, if time permits in the sprint.

It is also discussed that requirements to test case traceability do not

guarantee that the tests are not missing. It is a report to check whether the

feature is completely missed by the tester or otherwise.

Based on various discussions, Jay creates the plan of the

following things:

Chapter 12 Case study: shopping Cart apis

191

 1. Story

 2. Test summary

 3. Precondition

 4. Input value

 5. Test execution steps

 6. Expected result

 7. Actual result

The test plan is located at https://github.com/Apress/Learn-API-

Testing.

The test has data requirements. Jay starts working on the test data

preparation in parallel with working on the test plan.

 Test Data Preparation
In this sprint, the Development team targets to finish the user

management CRUD API endpoints and implement authentication and

authorization.

Jay creates test data using the test data generation tool available at www.

mockaroo.com9. This is one of the best tools for generating API testing data.

The free version is good enough, but the paid version is inexpensive.

Based on the test plan, he creates several payloads for testing the

endpoints.

9 www.mockaroo.com/

Chapter 12 Case study: shopping Cart apis

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing
http://www.mockaroo.com/
http://www.mockaroo.com/
http://www.mockaroo.com/

192

 Manual Test Scripts
Jay sets up www.testlink.org10 for test case management in sprint zero.

He already created the project and now he adds the test cases from the

spreadsheet to the Testlink project (after updating the spreadsheet format

as per the Testlink requirements).

The test case has an automated field which he kept unchecked since

he still has to work on the test automation scripts.

 Postman
The development team provides the working API endpoints. Jay quickly

sets up all the scenarios in Postman. This will help him to give quick

feedback to the developers if they miss some scenarios.

He develops the Postman collections for high-level use cases and

pushes them to the repository so that developers can pull the same and

can run tests in their local environment.

He also shares the GitHub location with the team, https://github.

com/Apress/Learn-API-Testing.

 Test Automation
Jay completes the first round of testing using the Postman scripts and then

he starts writing the test automation script.

He involves the other testing engineers to help him in writing the test

scripts for the given API endpoints.

Jay puts up the guidelines for test automation scripts as per the

categories listed in Table 12-3. He mentions to the team that they need to

develop tests based on these categories.

10 www.testlink.org/

Chapter 12 Case study: shopping Cart apis

http://www.testlink.org
https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing
http://www.testlink.org/

193

Table 12-3. Testing Categories

JWt payload user payload

admin payload

admin Crud user

authentication and authorization admin, user

user add, update, find billing details

add, update, find shipping details

add, update, find payment details

response body actual vs. expected data

page, size

schema validation user schema

error messages user Crud

request headers supported type

response codes

response body Format unsupported

special characters

too long string

invalid method

invalid value

incorrect data type

empty data/payload

required fields

null

redundant fields

delete the deleted entity

duplicate check

Limit/size/pagination/sorting

Chapter 12 Case study: shopping Cart apis

194

For JSON schema validation, Jay includes the hamcrest assert library

on the UserSchemaTest class.

import static org.hamcrest.MatcherAssert.assertThat;

Here is the code snippet:

@Test(description = "verify user schema", priority = 1)

public void testUserSchema() {

 File file = new File(USER);

 request().get(OneKlickShop.FIND_USER.url(), query);

 assertThat(response().getResponse().getBody().asString(),

 matchesJsonSchema(file));

}

Jay and his team merge the code to the main branch after a code

review meeting. Jay also updates the test plan column to the “Automated”

flag based on the test script development, as per the test plan, in both the

places: the spreadsheet and Testlink.

The code is located at https://github.com/Apress/Learn-

API-Testing.

 Test Suite
Jay creates a test suite named build-acceptance and adds the required

TestNG XML file to the test repository. This test suite contains tests related

to the feature in this sprint.

Chapter 12 Case study: shopping Cart apis

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing

195

 Parallel Test Execution
For faster test cycles, Jay configures the parallel test execution in the

TestNg XML test suite file. He also verifies via jvisualvm11 (a performance-

monitoring tool for Java-based applications) shown in Figure 12-1 to check

the thread count.

Figure 12-1. Parallel tests

11 https://docs.oracle.com/javase/8/docs/technotes/tools/unix/
jvisualvm.html

Chapter 12 Case study: shopping Cart apis

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jvisualvm.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jvisualvm.html

196

 Test Execution
Jenkins is already configured on the test code GitHub repository. Jay

schedules it to run every midnight on the latest development branch to

find regressions, if any.

Alap12, the other QA on the team, looks at the Jenkins build failures on

the test automation run just before the end of the sprint. He finds out that

a few of the tests related to the response body test category are failing. He

immediately informs the respective developers and they agree on the bug.

Jay and team also find out that update user only works with the

firstname and username, and the rest of the fields are not updating, but

the tests for activate/deactivate are getting passed.

@Test(description = "verify response of PUT /api/v1/users/

{id}", priority = 4)

public void testActivateUser() {

 query.put("id", USER_ID);

 String USER_UPDATE = "src/test/resources/payload/user/

activateUser.json";

 request().put(OneKlickShop.UPDATE_USER.url(), new File(USER_

UPDATE), query);

assertThat(response().getResponse().getStatusCode()).

isEqualTo(200);

assertThat(response().getResponse().getStatusLine()).

isEqualTo("HTTP" + "/1" + ".1 200 ");

}

He reviews the test and finds out that the only assertion is checking

the response status code. He creates a task to update the test script in the

next sprint.

12 Hypothetical name used for case study

Chapter 12 Case study: shopping Cart apis

197

Alap then reports the bug in the bug tracking system for triage since

those bugs are not showstoppers; they will be added to the backlog for

further prioritization.

Everyone in the team monitors the Jenkins test automation job. Jay

now configures the Jenkins to send emails on the test failures.

 Front-End Team
Since the APIs for authentication and authorization and user management

are tested completely, Jay approaches the front-end team to make sure

there are no issues in consuming the JWT token and the API they are

consuming for UI development. He discussed the usage and issues, if

any, with Sam13, who is the QA on the front-end team. Sam conveys there

are no issues on the API but says that the UI will also add error checks on

the client side so that each request will go to the server only if it’s a valid

request. Jay makes a note and conveys to his team that the error handling is

handled at the client side and is taken care of by the UI development team.

 Sprint Nth
In the ongoing sprints, Jay follows the same routine of preparing the test

plan, getting it reviewed by the team, adding tests to Testlink, developing

Postman tests, and developing test automation scripts using RestAssured

based on the categories he defined in sprint # 1. He also fixes the test script

from the previous sprint and undertakes stage testing and release testing.

13 Hypothetical name used for case study

Chapter 12 Case study: shopping Cart apis

198

 Sprint Demo Feedback Testing
At the end of every sprint, the scrum master sets up the sprint demo

meeting and the product management gives feedback to the development

team. The product manager uses a stage environment for testing since it is

a close replica of the production environment. Jay reports JIRA(s) and adds

to the product backlog.

Jay incorporates the feedback in the test plan for further feature testing.

 Hardening Sprint
Jay does the routine work in the hardening sprint. Also, he looks at the

backlog of bugs. He schedules the bug triage meeting and finalizes on

the list of bugs. These bugs are required to be fixed before the production

release.

The Development team fixes all of the bugs and deploys the code to the

staging environment after testing the development and test environments.

Sam, the QA from the UI team, also conveys that the UI is completed

and deployed to the stage environment.

The next task for Jay and Sam is to do the release testing to make sure

that the product goes live without the P0/P1 bugs.

 Release Testing
The development and test environment have CI/CD set up and tests are

executed with every commit. Now, since all of the features are developed

and the required bugs are fixed, Jay, Sam, and the QA team complete the

test script development. All tests are passed on to the development and

test environments. The code is deployed to the stage environment. Jay and

Sam run the test automation on the stage environment. They also perform

ad-hoc smoke testing manually and certify the code to be moved to the

production environment.

Chapter 12 Case study: shopping Cart apis

199

Jay and Sam give a nod to the production release and DevOps

deploys the code to the production environment. Thereafter, Jay and Sam

undertake the final round of smoke testing on the live environment. They

created a test user and a dummy order. The Production Deployment - GA
Release is completed and a release email is sent by the product manager

to all stakeholders and beta customers.

After the production deployment, everyone in the team is very happy

to see that the test automation has saved a lot of testing time by finding

regression early in the development cycle.

Jay informs the external teams that the testing code is located in the

GitHub repository located at https://github.com/Apress/Learn-API-

Testing, and any input on the testing framework and source code is

welcome for improving the same in the next project.

 Summary
In this chapter, you learned about how to perform API testing in a software

development project with the help of shopping cart APIs. You have learned

about QA responsibility matrix, goal setting, sprint guidelines, QA tasks

that involve documentation, test environment, CI/CD setup, test plan

development, test data preparation, manual test scripts, importance of

Postman while in feature testing, test automation and parallel test suite

execution. You also learned how to do release testing at the end of the

sprint. This chapter concludes API testing performed in the software

industry.

Chapter 12 Case study: shopping Cart apis

https://github.com/Apress/Learn-API-Testing
https://github.com/Apress/Learn-API-Testing

201

 APPENDIX A

Workstation Setup
This book has been written using macOS. It is expected that there will
be no change in the command since we are using maven as the build and
package management tool and Java as the programming language.

The following section has information on different environments on

how to install the required software if not present on your workstation.

This book is based on JDK 8 and compatible Maven binary. Feel free

to use the latest version of JDK with compatible Maven binary. For any

issues, please report to the author or open an issue on the book’s GitHub

repository: https://github.com/Apress/Learn- API- Testing.

 Java1

We are using Java as our language of choice for learning API testing.

The following section shows how to install Java on a workstation.

After installation is completed, check the Java version using the following

command. It should show JDK 8.

java -version

1 Excerpt from: Sai Matam and Jagdeep Jain, Pro Apache JMeter (Apress, 2017)

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0

https://github.com/Apress/Learn-API-Testing
https://doi.org/10.1007/978-1-4842-8142-0#DOI

202

 MacOS
Download the Java Development Kit (JDK) from Oracle’s website.

Pick JDK version 8. This is usually found on the web page by the name

jdk-8…-macosx-x64.dmg.

Follow the instructions and complete the installation. To verify

the installation of the Java runtime, run the following command in the

terminal window:

$ java -version

 Ubuntu
Open the terminal window in Ubuntu and issue the following command. It

should show JDK 8.

$ sudo add-apt-repository ppa:openjdk-r/ppa

$ sudo apt-get update

$ sudo apt-get install openjdk-8-jdk

 Linux
On Fedora, Oracle Linux, and Red Hat Enterprise Linux, open the terminal

window and issue the following command:

$ su -c "yum install java-1.8.0-openjdk"

 Windows
Download the Java Development Kit (JDK) from Oracle’s website.

Pick JDK version 8 for Windows. This is usually found on the web page

by the name jdk-8….-windows-x64.exe for 64-bit and jdk-8..windows-i586.

exe for 32-bit. Depending on your machine configuration, download the

required JDK.

Appendix A WorkstAtion setup

203

Double-click the executable to launch the installer and follow the

instructions.

Note set up JAVA_HoMe if things are not working as expected.

 Maven
This book instance is written using Maven 3.5.0, but any Maven which is

compatible with JDK 8.0 can be used.

Maven can be installed via standard commands or downloaded

manually from the Apache website https://maven.apache.org/

download.cgi and installed on your workstation with the Maven

executable set in the environmental path.

If Maven is installed manually, then we need to set MAVEN_HOME in the

environment variable and add the bin directory in the path for Windows

and the PATH variable on a Linux-based OS, so that we can execute Maven

commands from any directory.

After installation, check the version; enter the following command in

the terminal window:

$ mvn -version

 MacOS
Maven can be installed using Homebrew. We can specify the Maven

version to install. Refer to https://formulae.brew.sh/formula/maven.

$ brew install maven

Appendix A WorkstAtion setup

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://formulae.brew.sh/formula/maven

204

 Ubuntu
To install Maven, issue the following command in the terminal window:

$ sudo apt update

$ sudo apt install maven

 Linux
To install cURL, enter the following command in the terminal window:

$ sudo yum install maven

 Windows
For Windows, as of now there is no option to install Maven via executable.

Unzip the binary and set the Maven executable path in the environment

variables.

 Maven Project
We are using Maven as our build and package management tool. Creating

a Maven project takes less than a minute even though the Apache website

says “Maven in 5 Minutes.”2

Enter the following command in the terminal window:

$ mvn archetype:generate -DgroupId=com.apress.

app -DartifactId=app -DarchetypeArtifactId=maven-archetype-

quickstart -DarchetypeVersion=1.4 -DinteractiveMode=false

2 https://maven.apache.org/guides/getting-started/maven-in-five-
minutes.html

Appendix A WorkstAtion setup

https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

205

This will create a Maven project as an app.

$ cd app

And you can see the project details.

Or

Import as a Maven project into the IDE of your choice and check the

directory structure. It should have /src/main and /src/test folders.

 cURL
The following section shows how to install cURL on a workstation. After

installation is completed, verify the installation using the following

command. It should show various options of the cURL command.

curl -h

 MacOS
To install cURL, enter the following command in the terminal window:

$ brew install curl

 Ubuntu
To install cURL, enter the following command in the terminal window:

$ sudo apt-get install curl

 Linux
To install cURL, enter the following command in the terminal window:

$ yum install curl

Appendix A WorkstAtion setup

206

 Windows
To install cURL, download the tool from the following URL: https://curl.

se/windows/.

 Postman
Download Postman from www.postman.com/downloads/.

 IDE
Tests have been developed using IntelliJ. Another most popular IDE is

Eclipse, and it can be used in a similar way. It is just that we need to import

the project as a Maven project.

 Tomcat
Download Tomcat binary from https://tomcat.apache.org/

download- 90.cgi.

 MacOS/Ubuntu/Linux
Download Tomcat as a zip from https://dlcdn.apache.org/tomcat/

tomcat- 9/v9.0.62/bin/apache- tomcat- 9.0.62.tar.gz.

Explode and put it in the /opt folder.

For unzipping and copying using a single command, enter the

following command in the terminal window:

$ tar xvzf apache-tomcat-9.0.62.tar.gz -C /opt

Appendix A WorkstAtion setup

https://curl.se/windows/
https://curl.se/windows/
http://www.postman.com/downloads/
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://dlcdn.apache.org/tomcat/tomcat-9/v9.0.62/bin/apache-tomcat-9.0.62.tar.gz
https://dlcdn.apache.org/tomcat/tomcat-9/v9.0.62/bin/apache-tomcat-9.0.62.tar.gz

207

From the Tomcat /bin directory, start the Tomcat server; enter the

following command in the terminal window:

$./startup.sh

 Windows
Download Tomcat as a zip from https://dlcdn.apache.org/tomcat/

tomcat- 9/v9.0.62/bin/apache- tomcat- 9.0.62- windows- x64.zip.

Create a folder in your home directory as tomcat/ and explode the

zip file.

From the /bin folder you can start the Tomcat server.

Appendix A WorkstAtion setup

https://dlcdn.apache.org/tomcat/tomcat-9/v9.0.62/bin/apache-tomcat-9.0.62-windows-x64.zip
https://dlcdn.apache.org/tomcat/tomcat-9/v9.0.62/bin/apache-tomcat-9.0.62-windows-x64.zip

209

 APPENDIX B

Contact Management
Application
The contact management application is a sample application that will be

used to demonstrate API testing using cURL, Postman, and RestAssured.

Follow the below-mentioned instructions to run the contact

management application in your local environment.

 1. Clone the repository or download it as a zip from

the GitHub location https://github.com/apress/

learn-api-testing.

 2. From the Appendix-B/ directory, run the following

command in the terminal:

$ docker image build -t sa .

 3. Once the image is ready, execute the below-

mentioned command in the terminal window. This

will start the contact management application.

$ docker run -p 8080:8080 -t sa

These steps will start the application inside a docker container. This

application has an in-memory HSQLDB as a database, so all the data will

be wiped once the application shuts down or is stopped.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0

https://github.com/apress/learn-api-testing
https://github.com/apress/learn-api-testing
https://doi.org/10.1007/978-1-4842-8142-0#DOI

210

For the local Tomcat server, copy app.war from the Appendix-B/ folder

to the Tomcat webapps/ folder and start the server using the environment-

specific server start script.

Open the Postman application, enter the URL mentioned below, and

provide the username and password in JSON format.

Application URL: http://localhost:8080/app/auth/authenticate

User credentials:

{

 "userName": "admin",

 "password": "test123"

}

Get the JWT from the Headers -> Authorization value column and

use the same for the authentication to access the CRUD API calls.

Table B-1 shows the API endpoints of the contact management

application.

Table B-1. API Endpoints

Add a contact POST /api/v1/contacts

update a contact PUT /api/v1/contacts/{id}

delete a contact DELETE /api/v1/contacts/{id}

Find a contact GET /api/v1/contacts/{id}

Get a list of all contacts GET /api/v1/contacts

The sample payload for adding and updating a contact is as follows:

{

 "firstName": "Jagdeep",

 "lastName": "Jain",

 "email": "jj@learn-api-testing.com"

}

Appendix B ContACt MAnAGeMent AppliCAtion

211

 Swagger
Once the contact management application has started, open the URL

http://localhost:8080/app/swagger-ui/ in the browser to check

the API documentation of the contact management application in the

Swagger UI.

Appendix B ContACt MAnAGeMent AppliCAtion

213

APPENDIX C

Shopping Cart
Application
The shopping cart application is an online shopping application that will

be used to demonstrate API testing for a case study using RestAssured.

Follow the below-mentioned instructions to run the shopping cart

application in your local environment.

 1. Clone the repository or download it as a zip from

the GitHub location https://github.com/apress/

learn- api- testing.

 2. From the Appendix-C/ directory, run the following

command in the terminal:

$ docker image build -t sa .

 3. Once the image is ready, execute the below-

mentioned command in the terminal window. This

will start the shopping cart application.

$ docker run -p 8080:8080 -t sa

These steps will start the application inside a docker container. This

application has an in-memory HSQLDB as a database, so all the data will

be wiped once the application is shut down or stopped.

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0

https://github.com/apress/learn-api-testing
https://github.com/apress/learn-api-testing
https://doi.org/10.1007/978-1-4842-8142-0#DOI

214

For the local Tomcat server, copy eshop.war from the Appendix-C/

folder to the Tomcat webapps/ folder and start the server using the

environment-specific server start script.

Open the Postman application, enter the URL mentioned below, and

provide the username and password in JSON format.

Application URL: http://localhost:8080/eshop/login

User credentials

{

 "username": "admin@oneklickshop.com",

 "password": "test123"

}

Get the JWT from the response and use the same for the authentication

to access API calls.

 Swagger
Once the shopping cart application has started, open the URL http://

localhost:8080/eshop/swagger- ui/ in the browser to check the API

documentation of the shopping cart application in the Swagger UI.

Appendix C sHoppinG CArt AppliCAtion

215

Index

A
Agile development, 12, 166
Amazon mobile app, 166
API-based software

applications, 25, 29
API development, 9, 87, 165
API documentation, 165, 175

development artifacts, 166
standard, 166
using Swagger (see Swagger)

API endpoints, 123, 129, 139, 150,
165, 167, 190

API test coverage, 85, 104
API testing, 3

advantages, 8
API testing paradigm, 81
authentications, 31
back end/middle tier, 5
business workflows, 3
CDCT, 92
GUI vs. API test development, 8
header testing (see Header

testing)
HTTP(S), 4
internal vs. external APIs, 92, 93
Klick Shop Inc., 177
negative testing, 92, 93

request body (see
Request body)

request methods, 4
response body, 91
ROI, 5
schema validation, 82–85
test coverage, 85
test framework (see Test

framework, API testing)
test plan, 4
test scripts, 82
tools, 4
types, 6
use cases, 82
workflows, 82

API testing paradigm, 81, 165
Application programming

interfaces (APIs), 1
in middle tier, 2
service-based model, 2
testing (see API testing)
typical service-based software

application architecture, 2
typical web application, 2, 3

Assertj, 73, 108, 120, 123, 125
Assertj 3.9.1, 125
Authentication endpoint, 43

© Jagdeep Jain 2022
J. Jain, Learn API Testing, https://doi.org/10.1007/978-1-4842-8142-0

https://doi.org/10.1007/978-1-4842-8142-0#DOI

216

Authentications
API testing, 31
application, 31
and authorization, 37, 38
and authorization

services, 38
basic authentication, 32
HTTP authentication, 31
OAuth 2.0, 39
OAuth2-based

authentication, 35–37
Postman, 53, 54
session-based

authentication, 32, 33
standard authentication

mechanism, 31
in test script, 144
token/JWT-based

authentication, 33
Authorization, 37, 38, 59

ABAC, 38
RBAC, 37, 38

B
Backlog grooming, 181, 182, 184
BaseTest class

authentication, 153
create contact test

case, 154–157
request processor, 153
response processor, 153, 154

Basic authentication, 32
Black box testing, 76

C
Caching, 20, 22
Client-server architecture, 19
Client URL (cURL)

authentication, 42, 43
DELETE method, 49–51
GET method, 46, 47
Linux tool, 42
POST method, 44–46
PUT method, 47–49

Coding best practices and
guidelines

class naming conventions, 106
constant naming

conventions, 107
for custom framework, 106
documentation, 113
indentation, 108
method naming

conventions, 106
provide actual methods for

actions, 107
simplicity, 107
test assertions, 108
test class naming

conventions, 109
test method naming

conventions, 109, 110
test package naming

conventions, 111–113
variable naming

conventions, 107
Coding guidelines, 105

index

217

Compliance testing, 7
Components of a good test

script, 96
setup step, 97
tear down step, 97
test step, 97

Configuration classes
application configuration,

139, 140
complete URL for the Test

Script, 141, 142
Java Spring configuration,

137, 138
properties files, 136
Spring application context, 140
test data, 142–144

Consumer-driven contract testing
(CDCT), 7, 92

Continuous integration/
continuous deployment
(CI/CD), 189

Curl, 4, 203

D
Debug configuration, 121, 163
DELETE method, , , , 25, 49, 70, 90
Documentation, 185, 187
Documentation tools, 113, 165

E
Error code, 7
External API, 92, 165

F
First test script

Base Test, 152–154
BaseTest.java class, 152
debug configuration, 163
executing a test, 159
execution results, 160
Java Spring configuration, 152
logging, 161
response time, 162
steps for testing the

endpoint, 151
test suite, 157

Frameworks/libraries
Assertj, 73
HashMap, 72
Jackson-Databind, 72
Java Spring, 73
Log4j, 72
TestNG, 71, 72

Front-end team, 197
Functional testing, 6, 79, 86

G
General headers, 23, 24
GET method, , 25, 46
GET request, , 26, 175
GitHub, 113, 131, 189
Good test script, 95

components (see Components
of a good test script)

guidelines (see Guidelines for a
good test script)

index

218

for a software developer, 95
for a software tester, 95

Grey box testing, 77
GUI automation tests, 78
Guidelines for a good test script

always use assertions, 102
API test coverage, 104
avoid hard sleeps, 102
document test objective, 98
do not import a test into

another test, 103
do not overtest, 103
log4j, 100
no interventions between test

steps, 101, 102
order of tests, 100, 101
provide team members short

commands, 104
single assertion, 99
single-attempt test, 98
test boundaries, 103

GUI testing, 8, 78, 79

H
Hardening sprint, 198
HashMap, 72
Headers, 11, 17, 23, 24
Header testing

request headers (see Request
headers)

response headers, 87, 88
Hibernate, 14

HTTP authentication, 31, 150
HTTP DELETE request, 27
HTTP GET request, 26
HTTP headers, in the Google

Chrome Network tab, 24
HTTP POST request, 26
HTTP protocol, 20, 21, 81
HTTP PUT request, 27
HTTP requests

request body, 26
request header, 25
request methods, 25
resource address, 25

Hypertext Transfer
Protocol (HTTP)

application layer protocol, 21
clients, 22
client-server communication, 23
fetching, 21
headers, 23, 24
HTTP 0.9, 21
HTTP 1.1 version, 21
HTTP 2.0, 21
protocol, 22
requests (see HTTP requests)
response (see Responses, HTTP)
server acknowledges, 21
steps, TTP connection, 22

I
Indentation, 108
Intellij IDE console, 163, 164
Internal APIs, 91

Good test script (cont.)

index

219

J, K
Jackson-Databind, 72, 125, 132,

133, 146
Java-based application, 32, 195
Java code formatting plugin, 127
Java Spring, 73, 123
Java Spring

configuration, 137, 152
Jenkins, 187, 189, 196, 197
JSON file, 143, 155
JSON response, 120
JSON Web Token, 34
JUnit, 71
JWT token-based authentication

scheme, 177

L
Log4j, 72, 100, 123

M
Maven compiler plugin, 123, 125
Maven Surefire plugin, 123
Message testing, 7
Microservices architecture,

7, 12–14
Microservices, vs. monolithic-

based architectures, 12–17
Minimal viable

product (MVP), 178
Monolithic, vs. microservices-

based architectures, 14–17
Monolithic application, 12, 13

N
Negative testing, 92, 93
NeuKode, 178
Non-functional testing, 79
Non-mandatory requirements, 116

O
OAuth 1.0, 35
OAuth 2.0, 35, 37, 39
Object-Relational Mapping

(ORM), 1
OneKlickShop Testing, 185

P
Parallel test execution, 71, 123, 195
Pass incorrect headers, 87
Performance testing, 6, 183, 186
POST method, 25, 43, 44, 66
POST request, 26, 46, 56, 57, 61, 161
Postman, 4, 192

advantages, 51
assertions, 55, 56
authentication, 53, 54
browser/desktop-based

software application, 42
collections, 53
globals/environments, 52
requests (see Requests,

Postman)
scripts, 85
test parameters, 55
workspace, 51

index

220

POST requests, 26, 57, 61, 143, 161
PUT method, 25, 47, 68
PUT requests, 143

Q
QA tools, 187

R
Release testing, 197–199
REpresentational State Transfer

(REST), 18
Request body, 26

DELETE method, 90
duplicate check, 90
empty data/object, 89
format unsupported, 88
incorrect data type, 89
invalid method, 89
invalid value, 89
null, 90
redundant fields, 90
required fields, 89
special characters, 88
very long strings, 88

Request headers, 23, 25
correct headers, 86
functional testing, 86
incorrect header, 87
missing header, 86
unsupported media

types, 87
RequestProcessor class, 145

Requests, Postman, 56
authentication, 58
console, 59, 60
delete request, 62
GET request, 62
HTTP method, 57
PUT request, 62
request, 61, 62
variables, 58

Resource address, 25
Response body

actual vs. expected data, 91
API version testing, 91
limit/size/pagination/

sorting, 91
Response codes, 28, 29
Response headers, 24

response code, 87
supported media type, 87

Response objects, 131
Responses, HTTP

HTTP GET response, 28
response body, 28
response codes, 28, 29
response header, 28
status line, 27

Responsibility matrix, 179, 180
REST application

architecture, 18
RestAssured, 4, 42, 123

API tests, 71
using cURL and Postman, 64
features, 64
Maven project, 64

index

221

open source REST API testing
framework, 63

response object, 128
RestAssured project, 71

RestAssured test script, 128
REST-endpoints.properties,

136, 139, 140
RESTful architecture, 11, 18–20
RESTful service, 18, 19, 42
Role-based access control

(RBAC), 37, 38
Roles, OAuth2-based

authentication, 35

S
Scale testing, 7
Schema validation, 82–85, 194
Security testing, 6, 79, 85, 92, 155
Session-based authentication,

32, 33, 35
Shopping cart application

features for the MVP, 178
Klick Shop Inc., 177
responsibility matrix, 179
sprint cycle and related

activities, 181
Software applications, 12, 29, 31,

41, 42, 73, 75
Software development, 12, 75–77
Software Development Engineer in

Test (SDET), 178
Software web application, see Web

application

Sonar, 116
SonarQube, 188
SpringBeanConfiguration, 137
Sprint demo feedback testing, 198
Statelessness, 20
Status codes, 27, 29
Story grooming, 181, 182, 185
Story pointing method, 184
Surefire plugin, 123, 126
Swagger, 199

advantage, 167
API documentation, 167
authorization, 168
contact management

application, 167
contact management

endpoints, 168
contact model, 168, 169
endpoints, 169, 170
HTTP PUT, 173
PUT request, 174
request and response

models, 172
response, 171
UI, 167, 169

T
Targeted features, 189
Test automation, 192, 196, 197
Test case management, 187, 192
Test coverage, 76, 85, 190, 199
Test environment, 123, 136, 178,

180, 185, 187

index

222

Test execution, 187, 191, 195–197
Test framework, API testing

build-acceptance-tests.xml, 146
configuration classes (see

Configuration classes)
debug config, 150
exceptions, 135
framework requirements (see

Test framework
requirements, API testing)

logger, 148, 149
model class, 146
processor, 145
request, 128–131
response, 132–135
test driver, 150
test execution, 149
TestNG, 146
user authentication, 144, 145
util package, 149

Test framework requirements,
API testing

components, 116, 117
debug configuration, 121
dependencies and

plugins, 123–127
exception, 118
logger support, 121
Maven project, 122
model class, 120
processor, 119
request, 118
response, 118

test assertion, 120
test configuration, 119
test driver, 122
test execution, 121
test framework, 120
user authentication, 119
util, 121

Testlink, 187, 188, 192
TestNG, 71, 123, 146, 149, 195, 201
TestNG XML file, 157, 158, 194
Test plan

development, 190, 191
Test pyramid, 5, 73, 75–79, 190
Test scripts, 76, 82, 95, 96, 103,

108, 113
Test suite, 123, 146, 194
Token-based authentication,

33–35, 177, 178

U, V
Uniform interface, 19, 20
Unit testing, 71, 77, 79, 108, 190
Unsupported media types, 87
URL rewriting, 33
User authentication, 39, 119, 144

W
Web application

authentications (see
Authentications)

definition, 11

index

223

evolution, 12
HTTP (see Hypertext Transfer

Protocol (HTTP))
monolithic and microservices

architecture types, 12–17
RESTful architecture (see

RESTful architecture)
Web 1.0, 18
Web 2.0, 18

Web 3.0, 18
Web 4.0, 18
White box testing, 76, 77
Workspace, 51, 122
World Wide Web, 19

X, Y, Z
XUnit test framework, 120

index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction to API Testing
	What Is API Testing?
	Need
	Types of API Testing�
	Advantages
	Summary

	Chapter 2: Web Application Architecture
	Web Applications Defined
	Monolithic vs. Microservices Architecture
	Designing Test Strategies

	RESTful Architecture
	HTTP
	Headers
	Requests
	Request Methods
	Resource Addresses
	Request Headers
	Request Body

	Response
	Status Line
	Response Header
	Response Body

	Response Codes
	Summary

	Chapter 3: Authentication
	HTTP Authentication
	Basic Authentication

	Session-Based Authentication
	Token/JWT-Based Authentication
	OAuth2-Based Authentication
	Authorization
	RBAC
	ABAC

	Authentication and Authorization Services
	Summary

	Chapter 4: Tools, Frameworks, and Libraries
	API Testing Tools
	cURL
	Authentication
	POST
	GET
	PUT
	DELETE

	Postman
	Workspace
	Globals/Environments
	Collection
	Authentication
	Parameters
	Assertions
	Requests
	HTTP Methods
	Authentication
	Variables
	Console
	POST
	GET
	PUT
	DELETE

	RestAssured

	Frameworks/Libraries
	TestNG
	Log4j
	Jackson-Databind�
	HashMap
	Assertj
	Java Spring

	Summary

	Chapter 5: Test Pyramid
	Black Box Testing
	Grey Box Testing
	White Box Testing
	Test Pyramid
	Summary

	Chapter 6: Testing the API
	Workflows/Use Cases/Test Script
	Schema Validation
	Test Coverage
	Header Testing
	Request Header
	Correct Header
	Missing Header
	Incorrect Header
	Unsupported Type

	Response Header
	Supported Type
	Response Codes

	Request Body
	Format Unsupported
	Special Characters
	Very Long Strings
	Invalid Method
	Invalid Value
	Incorrect Data Type
	Empty Data/Object
	Required Fields
	Null
	Redundant Fields
	DELETE Already Deleted Entity
	Duplicate Check

	Response Body
	Actual Data vs. Expected Data
	Limit/Size/Pagination/Sorting
	API Version Testing

	Internal vs. External APIs
	Consumer-Driven Contract Testing
	Importance of Negative Testing
	Summary

	Chapter 7: A Good Test Script
	Components of a Test Script
	setup()
	test()
	teardown()

	Guidelines
	Single-Attempt Test
	Document Test Objective
	Keep It Small
	Use assertj for Assertions
	Use log4j
	Order of Tests
	No Interventions Between Test Steps
	Avoid Hard Sleeps
	Always Use Assertions
	Do Not Overtest
	Do Not Import a Test into Another Test
	Test Boundaries
	API Test Coverage
	Provide Short Commands
	Do not try{} catch{}

	Summary

	Chapter 8: Coding Guidelines
	Coding Best Practices
	Class Naming Conventions
	Method Naming Conventions
	Variable Naming Conventions
	Constant Naming Conventions
	Provide User Actions
	Simplicity
	Indentation

	Test Assertions
	Test Class Naming Conventions
	Test Method Naming Conventions
	Test Package Naming Conventions
	Documentation
	Summary

	Chapter 9: Organize a Test Framework
	Framework Requirements
	Request
	Response
	Exception
	Configuration
	User Authentication
	Processor
	Model
	Test Framework
	Test Assertions
	Logger
	Util
	Test Execution
	Debug Config
	Test Driver

	Setting Up a Maven Project
	Dependencies and Plugins
	RestAssured
	Log4j
	TestNG
	Spring Framework
	Assertj
	Jackson-Databind
	Maven Compiler Plugin
	Surefire Plugin
	Java Code Formatting Plugin

	Request
	Response
	Exceptions
	Configuration
	Properties File
	Spring
	Application Configuration
	Application Context
	Application Config
	Complete URL For the Test Script
	Test Data
	JSON File
	Payload for POST and PUT HTTP Methods

	User Authentication
	Processor
	Model
	Test Framework
	Logger
	Util
	Test Execution
	Debug Config
	Test Driver
	Summary

	Untitled
	Chapter 10: First Test Script
	Developing Your First Test
	Base Test
	Authentication
	Request Processor
	Response Processor

	First Test

	Test Suite
	TestNG XML

	Executing a Test
	Execute a Test Suite
	Execute an Individual Test

	Execution Results
	TestNG Report

	Logging
	log().all()

	Response Time
	Debug
	Summary

	Chapter 11: API Documentation
	Need
	Swagger
	Summary

	Chapter 12: Case Study: Shopping Cart APIs
	Feature List
	QA Responsibility Matrix
	Sprint #
	Goal Setting

	Sprint One
	Sprint Guidelines
	Definition of Done
	Story Pointing
	Backlog Grooming
	Story Grooming

	QA Tasks
	Documentation
	Test Environment
	Setting Up the Application
	QA Tools
	Continuous Integration/Continuous Deployment

	Targeted Features
	API Endpoints
	Unit Testing
	Test Plan Development
	Test Data Preparation
	Manual Test Scripts
	Postman
	Test Automation
	Test Suite
	Parallel Test Execution
	Test Execution
	Front-End Team

	Sprint Nth
	Sprint Demo Feedback Testing

	Hardening Sprint
	Release Testing

	Summary

	Appendix A: Workstation Setup
	Java�
	MacOS
	Ubuntu
	Linux
	Windows

	Maven
	MacOS
	Ubuntu
	Linux
	Windows

	Maven Project
	cURL
	MacOS
	Ubuntu
	Linux
	Windows

	Postman
	IDE
	Tomcat
	MacOS/Ubuntu/Linux
	Windows

	Appendix B: Contact Management Application
	Swagger

	Appendix C: Shopping Cart Application
	Swagger

	Index

